• Title/Summary/Keyword: Power supply noise

Search Result 484, Processing Time 0.027 seconds

Conducted Noise in Switched Mode Power Supply (SMPS에서 전도성 노이즈에 관한 연구)

  • Yi, H.H.;Lee, I.H.;Lee, H.H.;Oh, D.G.;Kwon, Y.A.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.106-108
    • /
    • 2002
  • SMPS는 스위칭을 통해 전력을 변환하므로 높은 dv/dt 및 di/dt 특성을 갖게 된다. 이러한 스위칭특성으로 인해 발생하는 EMI (Electromagnetic Interference) 노이즈는 기기 내부 또는 외부에 간섭을 일으킨다. 미국의 FCC (Federal Communications Commission) 및 유럽 의 CISPR(International Special Committee on Radio Interference) 등의 규정을 만족시키기 위해서 전도성 노이즈에 대한 충분한 이해와 해석이 필요하다. 본 연구는 SMPS에서의 EMI/EMC 대책 구현에 앞서, 전도성노이즈의 기본개념 및 발생/결합 경로를 분석하고 실제로 노이즈를 측정한다. 측정을 위해 Boost 컨버터가 제작/사용된다.

  • PDF

A Multi-channel CMOS Feedforward Transimpedance Amplifier Array for LADAR Systems (라이다 시스템용 멀티채널 CMOS 피드포워드 트랜스임피던스 증폭기 어레이)

  • Kim, Seung-Hoon;Park, Sung Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1737-1741
    • /
    • 2015
  • A multi-channel CMOS transimpedance amplifier(TIA) array is realized in a $0.18-{\mu}m$ CMOS technology for the applications of panoramic scan LADAR systems. Each channel consists of a PIN photodiode and a feed-forward TIA that exploits an inverter input stage followed by a feed-forward common-source amplifier so as to achieve lower noise and higher gain than a conventional voltage-mode inverter TIA. Measured results demonstrate that each channel achieves $76-dB{\Omega}$ transimpedance gain, 720-MHz bandwidth, and -20.5-dBm sensitivity for $10^{-9}$ BER. Also, a single channel dissipates the power dissipation of 30 mW from a single 1.8-V supply, and shows less than -33-dB crosstalk between adjacent channels.

Design of a Fourth-Order Sigma-Delta Modulator Using Direct Feedback Method (직접 궤환 방식의 모델링을 이용한 4차 시그마-델타 변환기의 설계)

  • Lee, Bum-Ha;Choi, Pyung;Choi, Jun-Rim
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.39-47
    • /
    • 1998
  • A fourth-order $\Sigma$-$\Delta$ modulator is designed and implemented in 0.6 $\mu\textrm{m}$ CMOS technology. The modulator is verified by introducing nonlinear factors such as DC gain and slew rate in system model that determines the transfer function in S-domain and in time-domain. Dynamic range is more than 110 dB and the peak SM is 102.6 dB at a clock rate of 2.8224 MHz for voiceband signal. The structure of a ∑-$\Delta$ modulator is a modified fourth-order ∑-$\Delta$ modulator using direct feedback loop method, which improves performance and consumes less power. The transmission zero for noise is located in the first-second integrator loop, which reduces entire size of capacitors, reduces the active area of the chip, improves the performance, and reduces power dissipation. The system is stable because the output variation with respect to unit time is small compared with that of the third integrator. It is easy to implement because the size of the capacitor in the first integrator, and the size of the third integrator is small because we use the noise reduction technique. This paper represents a new design method by modeling that conceptually decides transfer function in S-domain and in Z-domain, determines the cutoff frequency of signal, maximizes signal power in each integrator, and decides optimal transmission-zero frequency for noise. The active area of the prototype chip is 5.25$\textrm{mm}^2$, and it dissipates 10 mW of power from a 5V supply.

  • PDF

Low-Power ECG Detector and ADC for Implantable Cardiac Pacemakers (이식형 심장 박동 조율기를 위한 저전력 심전도 검출기와 아날로그-디지털 변환기)

  • Min, Young-Jae;Kim, Tae-Geun;Kim, Soo-Won
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.77-86
    • /
    • 2009
  • A wavelet Electrocardiogram(ECG) detector and its analog-to-digital converter(ADC) for low-power implantable cardiac pacemakers are presented in this paper. The proposed wavelet-based ECG detector consists of a wavelet decomposer with wavelet filter banks, a QRS complex detector of hypothesis testing with wavelet-demodulated ECG signals, and a noise detector with zero-crossing points. To achieve high-detection performance with low-power consumption, the multi-scaled product algorithm and soft-threshold algorithm are efficiently exploited. To further reduce the power dissipation, a low-power ADC, which is based on a Successive Approximation Register(SAR) architecture with an on/off-time controlled comparator and passive sample and hold, is also presented. Our algorithmic and architectural level approaches are implemented and fabricated in standard $0.35{\mu}m$ CMOS technology. The testchip shows a good detection accuracy of 99.32% and very low-power consumption of $19.02{\mu}W$ with 3-V supply voltage.

  • PDF

A Research to Minimizing the Effect of Voltage Disturbances on Sensitive Electrical and Electronic Equipment (민감한 전기전자기기의 전압외란에 대한 영향 최소화 연구)

  • 윤갑구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.2
    • /
    • pp.10-20
    • /
    • 1986
  • This paper describes a countermeasure of electric utilities and customer equipment in order to minimize an effect of sensitive electrical and electronic equipment on the voltage disturbances. After being studied, some schemes to solve were discovered. Firstly, in the electric utilities, the reduction of frequency and influence of voltage drop's time are not easy to realize because of the standpoint of effect and economy. Secondly, in the customer equipment, there are some equipment to minimize the voltage disturbances, Such as an UPSs, a noise suppressors and a power conditioners. One of them should be established on the computer control and automated systems, the electromagnetic switch of delay-release type should be adopted on the electromagnetic switch, the controlling circuit should be adopted on the variable speed motors which is being considered a countermeasure for a momentary under-voltage drops, the luminaire adhering a instantaneous restrike device should be adopted on the HID lamp. And also, the scheme of extending a setting time of relay on the undervoltage relay and the forming method of sequence which is automatic reclosing at this time of instantaneous suspension of an electric supply have been studied.

  • PDF

T/R Module Development for X-Band Active Phased-Array Radar (능동 위상 배열 레이더용 X-대역 T/R 모듈 개발)

  • Kim, Dong-Yoon;Chong, Min-Kil;Kim, Sang-Keun;Chon, Sang-Mi;Na, Hyung-Gi;Baik, Seung-Hun;Ahn, Chang-Soo;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1243-1251
    • /
    • 2009
  • This paper presents design and test results of X-Band Transmit/Receive(T/R) module for active phased-array radar. Active phased array radars typically require solid state T/R modules with high output power, low noise figure, high Third Order Intercept(TOI), and sufficient gain in both transmit and receive. The output power of the module is 9 watts over a wide bandwidth. The noise figure is as low as 2.8 dB. Phase and amplitude are controlled by the 6-bit phase shifter and 5-bit attenuator, respectively. Highly integrated T/R module is achieved by using LTCC(Low Temperature Co-fired Ceramic) multiple layer substrate. The module incorporates a compact digital interface, requires only three supply voltages.

A Design of 40GHz CMOS VCO (Voltage Controlled Oscillator) for High Speed Communication System (고속 통신 시스템을 위한 40GHz CMOS 전압 제어 발진기의 설계)

  • Lee, Jongsuk;Moon, Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.55-60
    • /
    • 2014
  • For an high speed communication, a 40GHz VCO was implemented using a 0.11um standard CMOS technology. The mm-wave VCO was designed by a LC type using a spiral inductor, and a simplified architecture with buffers and a smart biasing technique were used to get a high performance. The frequency range of the proposed VCO is 34~40GHz which is suitable for mm-Wave communication system. It has an output power of -16dBm and 16% tuning range. And the phase noise is -100.33dBc/Hz at 1MHz offset at 38GHz fundamental frequency. The total power consumption of VCO including PADs is 16.8mW with 1.2V supply voltage. The VCO achieves the FOMT of -183.8dBc/Hz which is better than previous VOCs.

Implementation of Speed Limitation Controller Considering Motor Parameter Variation in High Speed Operation (모터 파라미터 산포를 고려한 고속 운전에서의 속도제한 제어기 구현)

  • Kim, Kyung-Hoon;Yun, Chul;Kwon, Woo-Hyen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1584-1590
    • /
    • 2017
  • This paper presents a implementation method of reliable speed limitation controller considering motor parameter variation in high speed operation. In spinning process of drum washing machine, speed increase has to be limited when unallowable imbalance mass is detected. Otherwise, severe noise and vibration can happen because noise and vibration are proportional to imbalance mass. To detect imbalance mass, d-axis current magnitude is used. However, we have to compensate for back-emf and power supply variation by means of detecting them because d-axis current is affected by both of them. On the other hand, we have to carefully estimate back-emf because back-emf is affected by stator resistance variation and inverter voltage error. Stator resistance variation can happen by manufacturing process for mass production or temperature variation in running. And there are inverter voltage errors between command voltage from micro-computer to inverter and real voltage from inverter to motor because of rising and falling time delay and turn-on resistance of power semiconductor switch. To solve this problem, we propose 2-step align current injection method which is to inject step-wise current right before starting. By this method, we can simply obtain stator resistance by ratio of voltage without inverter voltage error and current, and we can measure inverter voltage error. So we can obtain more exact model current, and then by simple calculation with compensation gain, we can estimate more accurate motor back-emf. We show that this method works well. It is verified through experiments.

A Design of Frequency Synthesizer for T-DMB and Mobile-DTV Applications (T-DMB 및 mobile-DTV 응용을 위한 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • A Frequency synthesizer for T-DMB and mobile-DTV applications was designed using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors were chosen for VCO core to reduce phase noise. The VCO range is 920MHz-2100MHz using switchable inductors, capacitors and varactors. Varactor biases that improve varactor acitance characteristics were minimized as two, and $K_{VCO}$(VCO gain) value was aintained by switchable varactor. Additionally, VCO was designed that VCO gain and the interval of VCO gain were maintained using VCO gain compensation logic. VCO, PFD, CP and LF were verified by Cadence Spectre, and divider was simulated using Matlab Simulink, ModelSim and HSPICE. VCO consumes 10mW power, and is 56.3% tuning range. VCO phase noise is -127dBc/Hz at 1MHz offset for 1.58GHz output frequency. Total power consumption of the frequency synthesizer is 18mW, and lock time is about $140{\mu}s$.

A Design of Voltage Controlled Oscillator and High Speed 1/4 Frequency Divider using 65nm CMOS Process (65nm CMOS 공정을 이용한 전압제어발진기와 고속 4분주기의 설계)

  • Lee, Jongsuk;Moon, Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.107-113
    • /
    • 2014
  • A VCO (Voltage Controlled Oscillator) and a divide-by-4 high speed frequency divider are implemented using 65nm CMOS technology for 60GHz wireless communication system. The mm-wave VCO was designed by NMOS cross-coupled LC type using current source. The architecture of the divide-by-4 high speed frequency divider is differential ILFD (Injection Locking Frequency Divider) with varactor to control frequency range. The frequency divider also uses current sources to get good phase noise characteristics. The measured results show that the VCO has 64.36~67.68GHz tuning range and the frequency divider divides the VCO output by 4 exactly. The high output power of 5.47~5.97dBm from the frequency divider is measured. The phase noise of the VCO including the frequency divider are -77.17dBc/Hz at 1MHz and -110.83dBc/Hz at 10MHz offset frequency. The power consumption including VCO is 38.4mW with 1.2V supply voltage.