References
- R. D. Richmond et al., "Direct-Detection LADAR Systems," SPIE Tutorial, WA, USA, Vol. TT85, SPIE, 2010.
- S. G. Kim et al., "A 1.8Gb/s/ch 10mW/ch-23dB Crosstalk Eight-Channel Transimpedance Amplifier Array for LADAR Systems," IEEE Proc. of ISOCC, Nov. 2013.
- M. Lee and S. Baeg, "Advanced compact 3D lidar using a high speed fiber coupled pulsed laser diode and a high accuracy timing discrimination readout circuit," Proc. SPIE 8379, Laser Radar Technology and Applications XVII, 83790Z, May 2012.
- J. Nissinen, I. Nissinen, and J. Kostamonaara, "Integrated Receiver Including Both Receiver Channel and TDC for a Pulsed Time-of-Flight Laser Rangefinder With cm-Level Accuracy," IEEE J. Solid-State Circuit, Vol. 44, No. 5, pp. 1486-1497, May 2009. https://doi.org/10.1109/JSSC.2009.2017006
- A. Vilches et al., "Monolithic Large-Signal Transimpedance Amplifier for Use in Multi-Gigabit, Short-Range Optoelectronic Interconnect Applications," IEEE Tran. Circuits and Systems II, Vol.52, No.2, pp.102-106, Feb. 2005. https://doi.org/10.1109/TCSII.2004.840111
- F. Bruccoleri et al., "Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling," IEEE J. Solid-Stage Circuit, Vol. 39, No. 2, pp. 275-282, Feb. 2004. https://doi.org/10.1109/JSSC.2003.821786
- S. M. Park and S. Hong, "A 65mW 5-Gb/s/ch Current-Mode Common-Base Transimpedance Amplifier Array For Optical Interconnects," IEEE Photonics Technology Letters, Vol. 15, No. 8, pp. 1138-1140, Aug. 2003. https://doi.org/10.1109/LPT.2003.815340
- J. Kim and J. F. Buckwalter, "A 40-Gb/s Optical Transceiver Front-End in 45 nm SOI CMOS," IEEE J. of Solid-State Circuits, Vol. 47, No. 3, pp. 615-626, Mar. 2012. https://doi.org/10.1109/JSSC.2011.2178723
Cited by
- 1-Gb/s Readout Amplifier Array for Panoramic Scan LADAR Systems vol.65, pp.3, 2016, https://doi.org/10.5370/KIEE.2016.65.3.452
- A Dual-Channel CMOS Transimpedance Amplifier Array with Automatic Gain Control for Unmanned Vehicle LADARs vol.65, pp.5, 2016, https://doi.org/10.5370/KIEE.2016.65.5.831