• Title/Summary/Keyword: Power size

Search Result 5,410, Processing Time 0.036 seconds

A Study on Characteristics of Microcrystalline-silicon Films Fabricated by PECVD Method (플라즈마 화학증착법으로 제작한 미세결정질 실리콘 박막 특성에 관한 연구)

  • Lee, Ho-Nyeon;Lee, Jong-Ha;Lee, Byoung-Wook;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.848-852
    • /
    • 2008
  • Characteristics of microcrystalline-silicon thin-films deposited by plasma-enhanced chemical-vapor deposition (PECVD) method were studied. There were optimum values of RF power density and $H_2$ dilution ratio $(H_2/(SiH_4+H_2))$; maximum grain size of about 35 nm was obtained at substrate temperature of 250 $^{\circ}C$ with RF power density of 1.1 W/$cm^2$ and $H_2$ dilution ratio of 0.91. Larger grain was obtained with higher substrate temperature up to 350 $^{\circ}C$. Grain size dependence on RF power density and $H_2$ dilution ratio could be explained by etching effects of hydrogen ions and changes of species of reactive precursors on growing surface. Surface-mobility activation of reactive precursors by temperature could be a reason of grain-size dependence on the substrate temperature. Microcrystalline-silicon thin-films that could be used for flat-panel electronics such as active-matrix organic-light-emitting-diodes are expected to be fabricated successfully using these results.

Dispersion Technique of Ceramic Nanoparticles in Transformer Oil (세라믹계 나노분말을 함유한 변압기 절연유의 분산기술)

  • Song, Hyun-Woo;Choi, Cheol;Choi, Kyung-Shik;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.44-45
    • /
    • 2005
  • Both $Al_2O_3$ and $SiO_2$ nanopowders were ball-milled to break large agglomerates$(500nm\sim10{\mu}m$). To improve the dispersion of ball-milled nanoparticles in transformer oil, surface modification was performed with oleic acid(OA). The modified nanoparticles were examined by the particle size analyzer, electron microscope, Infrared spectroscopy and stability analyser. Particle Size distributions were measured for ball-milled particles, and the results were compared with the size distribution of primary particles. FTIR results indicated that hydrophobicity of modified nanoparticles was due to the chemical reaction between hydroxyl groups of particle surface and oleic acid. The dispersion stability of surface-modified nanoparticles was quite good in transformer oil.

  • PDF

The Converter of High Efficiency 48V 400A for Electronic Exchange (전자교환기용 고효율 48V 400A급 전력변환장치)

  • Park, S.W.;Joun, J.H.;Bae, Y.S.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.125-127
    • /
    • 1998
  • The widely used power supply (Switched Mode Power Supply : SMPS) as a source in order to stabilize direct current for electronics or communication systems has merits, when it is compared to the existing source for stability, such as high efficiency, small size, light weight by means of switching process of the semiconductor device which controls the flow of power. However, due to existence of inductors and capacitors used for charging energy, the source part in electronic or communication systems hasn't reached the speed, that is supposed to get, for achieving smaller size and lighter weight. In order to got smallness in size, it is necessary to increase switching frequency. And that makes devices for measuring energy smaller. Nevertheless, the rise switching frequency brings increases in switching loss, inductor loss, and power loss. Also, the occurrence of surge and noise caused by high frequency switching is setting higher. The resonant converter has been considered as one of methods that give solutions for the problems of SMPS and that method has been paid attention as a source technology in electronics and communication.

  • PDF

The optimization for the straight-channel PCHE size for supercritical CO2 Brayton cycle

  • Xu, Hong;Duan, Chengjie;Ding, Hao;Li, Wenhuai;Zhang, Yaoli;Hong, Gang;Gong, Houjun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1786-1795
    • /
    • 2021
  • Printed Circuit Heat Exchanger (PCHE) is a widely used heat exchanger in the supercritical carbon dioxide (sCO2) Brayton cycle because it can work under high temperature and pressure, and has been a hot topic in Next Generation Nuclear Plant (NGNP) projects for use as recuperators and condensers. Most previous studies focused on channel structures or shapes. However, no clear advancement has so far been seen in the allover size of the PCHE. In this paper, we proposed an optimal size of the PCHE with a fixed volume. Two boundary conditions of PCHE were simulated, respectively. When the volume of PCHE was fixed, the heat transfer rate and pressure loss were picked as the optimization objectives. The Pareto front was obtained by the Multi-objective optimization procedure. We got the optimized number of PCHE channels under two different boundary conditions from the Pareto front. The comprehensive performance can be increased by 5.3% while holding in the same volume. The numerical results from this study can be used to improve the design of PCHE with straight channels.

Expansion of power allocation using response rate per stratum (층별 응답률을 사용한 멱배정 방법의 확장)

  • Park, Hyeonah
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.671-683
    • /
    • 2021
  • Power allocation is a technique that evenly allocates samples for each stratum, although the overall efficiency of the allocation is less than that of optimal allocation, and it is often used as a square root proportional allocation in real survey. Also, considering the non-response that occurs in real survey, a larger sample size is used than that in the theoretical formula. In this study, in determining the sample size for each stratum, we study the new methods of allocating by adding information on the response rate per each stratum to power allocation method. The proposed allocation methods are compare with proportional, optimal, and square root proportional allocation in simulation. In addition, the comparison with the proportional and optimal allocation to which the response rate was added is examined through simulation. As a result, we examine the advantages and disadvantages of the allocation methods.

On Sample Size Calculation in Bioequivalence Trials

  • Kang, Seung-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.90-90
    • /
    • 2003
  • Sample size calculations play an important role in bioequivalence trials. In almost all clinical trials sample size is determined by considering power under the alternative hypothesis. The alternative hypothesis is the hypothesis that we wish to prove with experiments. Hence, in bioequivalence trials the alternative hypothesis is that two formulations are bioequivalent, while the null hypothesis is that the two formulations are not bioequivalent. (omitted)

  • PDF

On Sample Size Calculation in Bioequivalence Trials

  • Kang, Seung-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.117.2-118
    • /
    • 2003
  • Sample size calculations plays an important role in a bioequivalence trials and is determined by considering power under the alternative hypothesis. The regulatory guideline recommends that $2{\times}2$ crossover design is conducted and raw data is log-transformed for statistical analysis. In this paper, we discuss the sample size calculation in $2{\times}2$ crossover design with the log-transformed data.

  • PDF

Assessment of Internal Radiation Dose Due to Inhalation of Particles by Workers in Coal-Fired Power Plants in Korea (국내 석탄화력발전소 내 작업종사자의 입자 흡입에 따른 내부피폭 방사선량 평가)

  • Do Yeon Lee;Yong Ho Jin;Min Woo Kwak;Ji Woo Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.161-172
    • /
    • 2023
  • Coal-fired power plants handle large quantities of coal, one of the most prominent NORM, and the coal ash produced after the coal is burned can be tens of times more radioactive than the coal. Workers in these industries may be exposed to internal exposure by inhalation of particles while handling NORM. This study evaluated the size, concentration, particle shape and density, and radioactivity concentrations of airborne suspended particles in the main processes of a coal-fired power plant. Finally, the internal radiation dose to workers from particle inhalation was evaluated. For this purpose, airborne particles were collected by size using a multi-stage particle collector to determine the size, shape, and concentration of particles. Samples of coal and coal ash were collected to measure the density and radioactivity of particles. The dose conversion factor and annual radionuclide inhalation amount were derived based on the characteristics of the particles. Finally, the internal radiation dose due to particle inhalation was evaluated. Overall, the internal radiation dose to workers in the main processes of coalfired power plants A and B ranged from 1.47×10-5~1.12×10-3 mSv y-1. Due to the effect of dust generated during loading operations, the internal radiation dose of fly ash loading processes in both coal-fired power plants A and B was higher than that of other processes. In the case of workers in the coal storage yard at power plants A and B, the characteristic values such as particle size, airborne concentration, and working time were the same, but due to the difference in radioactivity concentration and density depending on the origin of the coal, the internal radiation dose by origin was different, and the highest was found when inhaling coal imported from Australia among the five origins. In addition, the main nuclide contributing the most to the internal radiation dose from the main processes in the coal-fired power plants was thorium due to differences in dose conversion factors. However, considering the external radiation dose of workers in coal-fired power plants presented in overseas research cases, the annual effective dose of workers in the main processes of power plants A and B does not exceed 1mSv y-1, which is the dose limit for the general public notified by the Nuclear Safety Act. The results of this study can be utilized to identify the internal exposure levels of workers in domestic coal-fired power plants and will contribute to the establishment of a data base for a differential safety management system for NORM-handling industries in the future.

Design of Power System Analysis Program Based on GUI (GUI 기반 전력계통 해석 프로그램 설계)

  • Kim, Sung-Gu;Lee, Kang-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.223-225
    • /
    • 2001
  • This paper presents the draft design of power system analysis program based on Graphic User Interface(GUI). According to an increase the power system size, it is not easy for the user to handle the power system analysis program. The power system analysis program based on GUI is necessary in order to increase the productivity of power system analysis tasks.

  • PDF

Design of Micro-structured Small Scale Energy Harvesting System for Pervasive Computing Applications (편재형 컴퓨팅을 위한 미세구조 에너지 하베스팅 시스템의 구조 설계)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.918-924
    • /
    • 2009
  • In this paper, we designed micro-structured electromagnetic transducers for energy harvesting and verified the performance of proposed transducers using finite element analysis software, COMSOL Multiphysics. To achieve higher energy transduce efficiency, around the magnetic core material, three-dimensional micro-coil structures with high number of turns are fabricated using semiconductor fabrication process technologies. To find relations between device size and energy transduce efficiency, generated electrical power values of seven different sizes of transducers ($3{\times}3\;mm^2$, $6{\times}6\;mm^2$, $9{\times}9\;mm^2$, $12{\times}12\;mm^2$, $15{\times}15\;mm^2$, $18{\times}18\;mm^2$, and $21{\times}21\;mm^2$) are analyzed on various magnetic flux density environment ranging from 0.84 T to 1.54 T and it showed that size of $15{\times}15\;mm^2$ device can generate $991.5\;{\mu}W$ at the 8 Hz of environmental kinetic energy. Compare to other electromagnetic energy harvesters, proposed system showed competitive performance in terms of power generation, operation bandwidth and size. Since proposed system can generate electric power at very low frequency of kinetic energy from typical life environment including walking and body movement, it is expected that proposed system can be effectively applied to various pervasive computing applications including power source of embodied medical equipment, power source of RFID sensors and etc. as an secondary power sources.