• 제목/요약/키워드: Power management circuit

Search Result 177, Processing Time 0.021 seconds

A CPLD Low Power Algorithm considering the Structure (구조를 고려한 CPLD 저전력 알고리즘)

  • Kim, Jae Jin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this paper, we propose a CPLD low power algorithm considering the structure. The proposed algorithm is implemented CPLD circuit FC(Feasible Cluster) for generating a problem occurs when the node being split to overcome the area and power consumption can reduce the algorithm. CPLD to configure and limitations of the LE is that the number of OR-terms. FC consists of an OR node is divided into mainly as a way to reduce the power consumption with the highest number of output nodes is divided into a top priority. The highest number of output nodes with the highest number of switching nodes become a cut-point. Division of the node is the number of OR-terms of the number of OR-terms LE is greater than adding the input and output of the inverter converts the AND. Reduce the level, power consumption and area. The proposed algorithm to MCNC logic circuits by applying a synthetic benchmark experimental results of 13% compared to the number of logical blocks decreased. 8% of the power consumption results in a reduced efficiency of the algorithm represented been demonstrated.

Power-Efficient Rate Allocation of Wireless Access Networks with Sleep-Operation Management for Multihoming Services

  • Lee, Joohyung;Yun, Seonghwa;Oh, Hyeontaek;Newaz, S.H. Shah;Choi, Seong Gon;Choi, Jun Kyun
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.619-628
    • /
    • 2016
  • This paper describes a theoretical framework for rate allocation to maximize the power efficiency of overall heterogeneous wireless networks whose users are assumed to have multihoming capabilities. Therefore, the paper first presents a power consumption model considering the circuit power and radio transmission power of each wireless network. Using this model, two novel power efficient rate allocation schemes (PERAS) for multihoming services are proposed. In this paper, the convex optimization problem for maximizing the power efficiency over wireless networks is formulated and solved while guaranteeing the required quality of service (QoS). Here, both constant bit rate and variable bit rate services are considered. Furthermore, we extend our theoretical framework by considering the sleep-operation management of wireless networks. The performance results obtained from numerical analysis reveal that the two proposed schemes offer superior performance over the existing rate allocation schemes for multihoming services and guarantee the required QoS.

Spread Spectrum Method based Power Line Communication for Plant Monitoring and Control System (전력선 통신을 이용한 plant 감시 제어 시스템)

  • 서민상;성석경;안병규
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.211-215
    • /
    • 1997
  • Localized communication networks for office automation, security monitoring, environmental management of buildings, computer communications, and other applications enjoy every increasing demand. This paper proposes a direct sequence spread spectrum communication system for use in power line data transmission. Advantages of power distribution circuits include reasonably universal coverage and easy access vis a standard wall plug. Disadvantages include limited communication bandwidth, relatively high noise levels, and varying levels of impedance, noise, and attenuation. Spread spectrum signalling provides immunity to narrow-band signal impairments and multiplexing capability. Our prototype power line communication module supports completely physical and data link layers based on the international standard ISO 10368 for reliable high-speed power line communication system. Moreover it provides useful functions to compose a plant monitoring and control system. All the circuits of the communication module are included in one compact circuit. Thus a functional communication system for the power line plant monitoring and control is implemented.

  • PDF

An Isolated Bidirectional Modular Multilevel DC/DC Converter for Power Electronic Transformer Applications

  • Wang, Zhaohui;Zhang, Junming;Sheng, Kuang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.861-871
    • /
    • 2016
  • With high penetration of renewable energies, power electronic transformers (PETs) will be one of the most important infrastructures in the future power delivery and management system. In this study, an isolated bidirectional modular multilevel DC/DC converter is proposed for PET applications. A modular multilevel structure is adopted as switching valves to sustain medium voltages to achieve modular design and high reliability. Only one high-frequency transformer is used in the proposed converter, which significantly simplifies the circuit and galvanic insulation design. A dual-phase-shift modulation strategy is proposed to regulate the output power and achieve a simple voltage balancing control. A down-scaled (2 kW/20 kHz) prototype is constructed to demonstrate the proposed converter and verify the control strategy. The experimental results comply with the theoretical analysis well, with the highest power efficiency reaching 97.6%.

Calculation Method of Dedicated Transmission Line's Meteological Data to Forecast Renewable Energy (신재생에너지 예측을 위한 송전선로의 계량 데이터 계산 방법)

  • Ja-hyun, Baek;Hyeonjin, Kim;Soonho, Choi;Sangho, Park
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.55-59
    • /
    • 2022
  • This paper introduce Renewable Energy forecasting technology, which is a part of renewable management system. Then, calculation method of dedicated transmission line's meteorological data to forecast renewable energy is suggested. As the case of dedicated transmission line, there is only power output data combined the number of renewable plants' output that acquired from circuit breakers. So it is need to calculate meteorological data for dedicated transmission line that matched combined power output data. this paper suggests two calculation method. First method is select the plant has the largest capacity, and use it's meteorological data as line meteorological data. Second method is average with weight that given according to plants' capacity. In case study, suggested methods are applied to real data. Then use calculated data to Renewable forecasting and analyze the forecasting results.

세라믹 패키지 내에서 비아에 따른 열적 거동에 관한 연구

  • 이우성;고영우;유찬세;김경철;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.153-157
    • /
    • 2002
  • Thermal management is very important for the success of high density circuit design in LTCC. To realized more accurate thermal analysis for structure design, a series of simple thermal resistance measurement by laser flash method and parametric numerical analysis have been carried out. The design of via filled material would be useful in thermal management of power devices.

  • PDF

A Cell-to-Cell Fast Balancing Circuit for Lithium-Ion Battery Module (리튬이온 배터리 모듈을 위한 단일셀간 고속 밸런싱 회로)

  • Pham, Van-Long;Basit, Khan Abdul;Nguyen, Thanh-Tung;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.7-8
    • /
    • 2015
  • In this paper a cell-to-cell fast charge balancing circuit for the Lithium-Ion battery module is proposed. In the proposed topology the energy in a high voltage cell is transferred directly to a low voltage cell through the operation of the dc-dc converter. Furthermore, the charge balancing can be performed regardless of the battery operation whether it is being charged, discharged or relaxed. The monitoring circuit composed of a DSP and a battery monitoring IC is designed to monitor the cell voltage and detect the inferior cell thereby protecting the battery module from failure. In order to demonstrate the performance of the proposed topology, a prototype circuit was designed and applied to 12 Lithium-Ion battery module. It has been verified with the experiments that the charge equalization time of the proposed method was shorter compared with those of other methods.

  • PDF

3.7-V Single Battery-Cell High-Efficiency Power Management Circuit and System for UAV-Drones (무인항공기를 위한 3.7V 단일 배터리 셀 고효율 전력관리 회로시스템)

  • Kang, Woonsung;Hwang, Sunnam;Chang, Ho Jung;Kim, Hyun-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.63-69
    • /
    • 2017
  • This paper presents a highly efficient power management system for UAV-drones. For free from the battery cell-balancing issue, the proposed system allows the drone to utilize a single-cell Li-Po battery. To realize low-voltage input of 3.7V, the switch-mode step-up DC-DC converter is optimally designed with high power efficiency. The prototype DC-DC converter was implemented with an output voltage of 5V, which will be provided to digital parts of the drone. The power efficiency was measured to be max. 91.3% with low surface temperature. The measured line and load regulations were 0.02V/V and 0.15V/A, respectively. Thanks to the proposed power management system, the available time-to-fly of the drone is expected to be significantly extended in virtue of the enhanced power efficiency.

A Study on the Design of the Operator Training Simulator for Power Monitor and Control System in the Railway System (철도 전력관제시스템을 위한 운영자 훈련용 시뮬레이터 설계에 관한 연구)

  • Cho, Yoon-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1631-1638
    • /
    • 2015
  • This paper describes the design methodology of the operator training simulator for power monitor and control system in the railway system. In power system, the purpose of energy management system was to monitor, control, and analyze the performance of generation and transmission system based on H/W and S/W. Network analysis applications provide a clear picture of power system characteristics using state estimation, power flow and short circuit analysis. In this respect, the operator training system in the railway system should be equipped with the methodology of these systems. First, the proposed database structure in the railway system was introduced. Then the overall structure of operator training system based on railway analysis applications was proposed. Finally, a methodology to verify the performance of the developed applications was described.

Power Management Circuits for Self-Powered Systems Based on Solar Energy Harvesting (빛 에너지 하베스팅을 이용한 자가발전 시스템용 전력관리 회로)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1660-1671
    • /
    • 2013
  • In this paper two types of power management circuits for solar energy harvesting self-powered systems are proposed. First, if the output voltage of a solar cell is enough to drive load, a power management unit(PMU) directly supplies load with solar energy. Second, if a solar cell outputs very low voltage less than 0.5V as in miniature solar cells or monolithic integrated solar cells such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then PMU delivers the boosted voltage to the load. The proposed power management systems are designed and fabricated in a $0.18{\mu}m$ CMOS process, and their performances are compared and analyzed through measurements.