• Title/Summary/Keyword: Power Transmission and Reflection Coefficients

Search Result 26, Processing Time 0.028 seconds

Experimental Analysis of Power Transmission and Reflection In a Coupled Plate (연성평판에서의 파워투과 및 반사 특성 실험 해석)

  • Lee, Y.H.;Kil, H.G.;Lee, H.H.;Lee, K.H.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.170-173
    • /
    • 2005
  • The objective of this paper is to perform measurements of power transmission and reflection coefficients in a coupled plate. The coupled plate has been divided into 2 subsystems. The out-of-plane vibration has been only considered with assumption of relatively small in-plane vibration. The coupling loss factors have been measured with consideration of the power balance condition. The power transmission and reflection coefficients has been estimated from the measured values of the coupling loss factors. The measured power transmission and reflection coefficients have been compared with the corresponding theoretical coefficients in a semi-infinite coupled plate.

  • PDF

Power Reflection and Transmission Coefficients for Meander-Line Polarizers with a Chiral Slab

  • Delihacioglu, Kemal;Uckun, Savas
    • ETRI Journal
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2003
  • This paper presents a theoretical investigation of power reflection and transmission coefficients for a meander-line polarizer placed periodically on a chiral slab. It is assumed that a linearly polarized transverse magnetic wave is incident on a chiral slab from the air region. In the analysis, we derive the electric and magnetic fields in the modal form in the air and chiral regions. We obtain power reflection and transmission coefficients in a straightforward manner after matching the tangential components of the electric and magnetic fields at the boundaries. We present numerical results for the power reflection and transmission coefficients versus frequency and incident angle for different values of the chirality admittance. A meander-line polarizer placed on a dielectric slab can convert a linearly polarized wave to a circularly polarized wave. The design parameters for a meander-line polarizer are the dimensions of the meander-line and the values of the dielectric slab. Replacing a dielectric slab with a chiral slab introduces a new independent parameter which controls the wave polarization.

  • PDF

Wave Transmission Approach of Coupled Plate Structures through Non-conservative Joints for Power Flow Analysis (파워흐름해석을 위한 비보존 조인트로 편성된 평판 구조물의 파워투과반사계수 해석)

  • Song, J.H.;Hong, S.Y.;Park, Y.H.;Park, D.H.;Kil, H.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.505-510
    • /
    • 2002
  • The attenuation of waves transmitted through non-conservative joints that are shown in many paractical structures, is affected by the impedance and the orientation of the joint. In this paper, the joints between plate structures are assumed to be modeled as linear spring-dashpot systems and the transmission and reflection of vibration energy in the medium to high frequency ranges are investigated. The calculated power transmission and reflection coefficients are applied to the PFA method for the prediction of energy density and intensity in structures.

  • PDF

Vibration Power Flow Analysis of Coupled Shell Structures (연성된 쉘 구조물의 진동 파워흐름해석)

  • Kim, Il-Hwan;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.352.2-352
    • /
    • 2002
  • In this paper, Power Flow Analysis (PFA) method has been applied to the prediction of vibration energy density and intensity of coupled shell structures in the medium-to-high frequency ranges. To consider the wave transformation at joint between shell elements, power transmission and reflection coefficients are investigated for various joint angles, and here Donnell-Mushtari thin shell theory has been used. (omitted)

  • PDF

Wave Transmission Analysis of Beam/Plate Point-Coupled Structures (보/평판 점연성구조의 파동전달해석)

  • 서성훈;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.457-467
    • /
    • 2004
  • Wave Transmission analysis is one of methods for power transmission and reflection coefficients in coupled infinite structures. This paper focuses the wave transmission analysis of point coupled structures among semi-infinite beams and infinite thin plates considering all kinds of waves. It is supposed that the junction through the beams and plates is an identical spot and no point of contact exist except the spot. The boundary conditions are applied at the spot for continuities of 6 DOF displacements and 6 DOF force equilibriums, and then wave fields are obtained in the coupled structures. Since wave components in plate field are simplified using asymptotic expressions of Henkel functions, the displacements and forces at the plate junction can be simply expressed with magnitudes of the wave components. The wave fields according to incident waves gives the power transmission coefficients in beam/plate point coupled structures. For both coupled structures with a beam vertically and obliquely joined to a plate, power transmission analysis is performed and the analysis results are compared and examined.

  • PDF

Development of Compliant and Dissipative Joints in Coupled Thin Plates for Vibrational Energy Flow Analysis (평판 구조물의 진동 파워흐름해석을 위한 비보존 조인트 개발)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1082-1090
    • /
    • 2008
  • In this paper, a general solution for the vibrational energy and intensity distribution through a compliant and dissipative joint between plate structures is derived on the basis of energy flow analysis (EFA). The joints are modeled by four sets of springs and dashpots to show their compliancy and dissipation in all four degrees of freedom. First, for the EFA, the power transmission and reflection coefficients for the joint on coupled plate structures connected at arbitrary angles were derived by the wave transmission approach. In numerical applications, EFA is performed using the derived coefficients for coupled plate structures under various joint properties, excitation frequencies, coupling angles, and internal loss factors. Numerical results of the vibrational energy distribution showed that the developed compliant and dissipative joint model successfully predicted the joint characteristics of practical structures vibrating in the medium-to-high frequency ranges. Moreover, the intensity distribution of a compliant and dissipative joint is described.

Wave Transmission Approach of Coupled Plate Structures through Non-conservative Joints for Power Flow Analysis (파워흐름해석을 위한 비보존 조인트로 연성된 평판 구조물의 파워투과반사계수 해석)

  • Song, J-H;Hong, S-Y;Park, Y-H;Park, D-H;Kil, H-G
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.353.2-353
    • /
    • 2002
  • The attenuation of waves transmitted through non-conservative joints that are shown in many practical structures, is affected by the impedance and the orientation of the joint. In this paper, the joints between plate structures are assumed to be modeled as linear spring-dashpot systems and the transmission and reflection of vibration energy in the medium to high frequency ranges are investigated. (omitted)

  • PDF

Vibration Intensity Analysis of Penetration Beam-plate Coupled Structures (관통보와 평판의 연결 구조물에 대한 진동인텐시티 해석)

  • 홍석윤;강연식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • The transmission of vibration energy through beam-plate junctions in vibration intensity analysis called power new analysis (PFA) has been studied. PFA is an analytic tool for the prediction of frequency averaged vibration response of built-up structures at medium to high frequency ranges. The power transmission and reflection coefficients between the semi-infinite beam and plate are estimated using the wave transmission approach. For the application of the power coefficients to practical complex structures, the numerical methods, such as finite element method are needed to be adapted to the power flow governing equation. To solve the discontinuity of energy density at the joint, joint matrix is developed using energy flow coupling relationships at the beam-plate joint. Using the joint matrix developed in this paper, an idealized ship stem part is modeled with finite element program, and vibration energy density and intensity are calculated.

Vibration Power Flow Analysis of Coupled Shell Structures (연성된 쉘 구조물의 진동 파워흐름해석)

  • Kim, Il-Hwan;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.492-497
    • /
    • 2002
  • In this paper, Power Flow Analysis(PFA) method has been applied to the prediction of vibration energy density and intensity of coupled shell structures in the medium-to-high frequency ranges. To consider the wave transformation at joint between shell elements, power transmission and reflection coefficients are investigated for various joint angles, and here Donnell-Mushtari thin shell theory has been used. For validations computations are performed to analyze the response of coupled shells by changing the excitation frequency and damping loss factor.

  • PDF

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • Park, Young-Ho;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.164-169
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.