• Title/Summary/Keyword: Power MOSFETs

Search Result 171, Processing Time 0.02 seconds

Characteristics of Non-alloyed Mo Ohmic Contacts to Laser Activated p-type SiC (레이저 활성화에 의한 p형 Sic와 비합금 Mo 오믹 접합)

  • 이형규;이창영;송지헌;최재승;이재봉;김기호;김영석;박근형
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.557-563
    • /
    • 2003
  • SiC has been an useful material for the high voltage, high temperature, and high frequency devices, however, the required high process temperature to activate the implanted p-type dopants has hindered further developments. In this study, we report, for the first time, on the laser activation of implanted Al and non-alloyed Mo ohmic contacts and its application to MOSFET fabrication. The contact and sheet resistance measured from CTLM patterns have decreased by increasing laser power, and the lowest values are 3.9 $K\Omega$/$\square$ and 1.3 $\times$ 10$^{-3}$ $\Omega$-cm$^2$, respectively, at the power density of 1.45 J/cm$^2$ The n-MOSFETs fabricated on laser activated p-well exhibit well-behaved I-V characteristics and threshold voltage reduction by reverse body voltage. These results prove that the laser process for implant activation is an alternative low temperature technology applicable to SiC devices.

A Ripple-free Input Current Interleaved Converter with Dual Coupled Inductors for High Step-up Applications

  • Hu, Xuefeng;Zhang, Meng;Li, Yongchao;Li, Linpeng;Wu, Guiyang
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.590-600
    • /
    • 2017
  • This paper presents a ripple-free input current modified interleaved boost converter for high step-up applications. By integrating dual coupled inductors and voltage multiplier techniques, the proposed converter can reach a high step-up gain without an extremely high turn-ON period. In addition, a very small auxiliary inductor employed in series to the input dc source makes the input current ripple theoretically decreased to zero, which simplifies the design of the electromagnetic interference (EMI) filter. In addition, the voltage stresses on the semiconductor devices of the proposed converter are efficiently reduced, which makes high performance MOSFETs with low voltage rated and low resistance $r_{DS}$(ON) available to reduce the cost and conduction loss. The operating principles and steady-state analyses of the proposed converter are introduced in detail. Finally, a prototype circuit rated at 400W with a 42-50V input voltage and a 400V output voltage is built and tested to verify the effectiveness of theoretical analysis. Experimental results show that an efficiency of 95.3% can be achieved.

A Study on JFET and FLR Optimization for the Design and Fabrication of 3.3kV SiC MOSFET (3.3kV SiC MOSFET 설계 및 제작을 위한 JFET 및 FLR 최적화 연구)

  • YeHwan Kang;Hyunwoo Lee;Sang-Mo Koo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2023
  • The potential performance benefits of Silicon Carbide(SiC) MOSFETs in high power, high frequency power switching applications have been well established over the past 20 years. In the past few years, SiC MOSFET offerings have been announced by suppliers as die, discrete, module and system level products. In high-voltage SiC vertical devices, major design concerns is the edge termination and cell pitch design Field Limiting Rings(FLR) based structures are commonly used in the edge termination approaches. This study presents a comprehensive analysis of the impact of variation of FLR and JFET region on the performance of a 3.3 kV SiC MOSFET during. The improvement in MOSFET reverse bias by optimizing the field ring design and its influence on the nominal operating performance is evaluated. And, manufacturability of the optimization of the JFET region of the SiC MOSFET was also examined by investigating full-map electrical characteristics.

  • PDF

Rectifier with Comparator Using Unbalanced Body Biasing to Control Comparing Time for Wireless Power Transfer (비대칭 몸체 바이어싱 비교기를 사용하여 비교시간을 조절하는 무선 전력 전송용 정류기)

  • Ha, Byeong Wan;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1091-1097
    • /
    • 2013
  • This paper presents a rectifier with comparator using unbalanced body biasing in $0.11{\mu}m$ RF CMOS process. It is composed of MOSFETs and two comparators. The comparator is used to reduce reverse leakage current which occurs when the load voltage is higher than input voltage. For the comparator, unbalanced body biasing is devised. By using unbalanced body biasing, reference voltage for comparator changing from high state to low state is increased, and it reduces time interval for leakage current to flow. 13.56 MHz 2 Vpp signal is used for input and $1k{\Omega}$ resistor and 1 nF capacitor are used for output load for simulation and experimental environment. In simulation environment, voltage conversion efficiency(VCE) is 87.5 % and Power conversion efficiency(PCE) is 50 %. When the rectifier is measured, VCE shows 90.203 % and PCE shows 45 %.

Electrical Characteristics of SiO2/4H-SiC Metal-oxide-semiconductor Capacitors with Low-temperature Atomic Layer Deposited SiO2

  • Jo, Yoo Jin;Moon, Jeong Hyun;Seok, Ogyun;Bahng, Wook;Park, Tae Joo;Ha, Min-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.265-270
    • /
    • 2017
  • 4H-SiC has attracted attention for high-power and high-temperature metal-oxide-semiconductor field-effect transistors (MOSFETs) for industrial and automotive applications. The gate oxide in the 4H-SiC MOS system is important for switching operations. Above $1000^{\circ}C$, thermal oxidation initiates $SiO_2$ layer formation on SiC; this is one advantage of 4H-SiC compared with other wide band-gap materials. However, if post-deposition annealing is not applied, thermally grown $SiO_2$ on 4H-SiC is limited by high oxide charges due to carbon clusters at the $SiC/SiO_2$ interface and near-interface states in $SiO_2$; this can be resolved via low-temperature deposition. In this study, low-temperature $SiO_2$ deposition on a Si substrate was optimized for $SiO_2/4H-SiC$ MOS capacitor fabrication; oxide formation proceeded without the need for post-deposition annealing. The $SiO_2/4H-SiC$ MOS capacitor samples demonstrated stable capacitance-voltage (C-V) characteristics, low voltage hysteresis, and a high breakdown field. Optimization of the treatment process is expected to further decrease the effective oxide charge density.

Transformer Design Methodology to Improve Transfer Efficiency of Balancing Current in Active Cell Balancing Circuit using Multi-Winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로에서 밸런싱 전류 전달 효율을 높이기 위한 변압기 설계 방안)

  • Lee, Sang-Jung;Kim, Myoung-Ho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.247-255
    • /
    • 2018
  • This paper proposes a transformer design of a direct cell-to-cell active cell balancing circuit with a multi-winding transformer for battery management system (BMS) applications. The coupling coefficient of the multi-winding transformer and the output capacitance of MOSFETs significantly affect the balancing current transfer efficiency of the cell balancing operation. During the operation, the multi-winding transformer stores the energy charged in a specific source cell and subsequently transfers this energy to the target cell. However, the leakage inductance of the multi-winding transformer and the output capacitance of the MOSFET induce an abnormal energy transfer to the non-target cells, thereby degrading the transfer efficiency of the balancing current in each cell balancing operation. The impacts of the balancing current transfer efficiency deterioration are analyzed and a transformer design methodology that considers the coupling coefficient is proposed to enhance the transfer efficiency of the balancing current. The efficiency improvements resulting from the selection of an appropriate coupling coefficient are verified by conducting a simulation and experiment with a 1 W prototype cell balancing circuit.

Implementation of a High Efficiency SCALDO Regulator Using MOSFET (MOSFET를 이용한 고효율 SCALDO 레귤레이터 구현)

  • Kwon, O-Soon;Son, Joon-Bae;Kim, Tea-Rim;Song, Jong-Gyu
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.304-310
    • /
    • 2015
  • A SCALDO(Supercapacitor Assisted LDO) regulator is a new regulator having advantages of a SMPS(Switch Mode Power Supply) which has a good efficiency and a LDO(Low Drop-out) regulator which has stable output characteristics and good EMI(Electro Magnetic Interference) characteristics. However, a conventional SCALDO regulator needs a lot of power consumption to control its switches and it drops an efficiency of the circuit. In this paper, to reduce switching power consumption and improve an efficiency of the circuit, a new SCALDO regulator adopting MOSFETs as its switching parts is proposed and it is found out that the proposed SCALDO regulator has the maximum 9.5% higher efficiency than the conventional SCALDO regulator. We also try to simplify production process of the circuit by changing switching control method of the circuit from MCU(Micro-controller unit) based firmware control to hardware control using a comparator and a T-F/F(Flip Flop).

Analysis of Synchronous Rectification Discontinuous PWM for SiC MOSFET Three Phase Inverters

  • Dai, Peng;Shi, Congcong;Zhang, Lei;Zhang, Jiahang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1336-1346
    • /
    • 2018
  • Wide band gap semiconductor devices such as SiC MOSFETs are becoming the preferred devices for high frequency and high power density converters due to their excellent performances. However, the proportion of the switching loss that accounts for the whole inverter loss is growing along with an increase of the switching frequency. In view of the third quadrant working characteristics of a SiC MOSFET, synchronous rectification discontinuous pulse-width modulation is proposed (SRDPWM) to further reduce system losses. The SRDPWM has been analyzed in detail. Based on a frequency domain mathematical model, a quantitative mathematical analysis of the harmonic characteristic is conducted by double Fourier transform. Meanwhile, a switching loss model and a conduction loss model of inverter for SRDPWM have been built. Simulation and experimental results verify the result of the harmonic analysis of the double Fourier analysis and the accuracy of the loss models. The efficiencies of the SRDPWM and the SVPWM are compared. The result indicates that the SRDPWM has fewer losses and a higher efficiency than the SVPWM under high switching frequency and light load conditions as a result of the reduced number of switching transitions. In addition, the SRDPWM is more suitable for SiC MOSFET converters.

A New Manufacturing Technology and Characteristics of Trench Gate MOSFET (새로운 트렌치 게이트 MOSFET 제조 공정기술 및 특성)

  • Baek, Jong-Mu;Cho, Moon-Taek;Na, Seung-Kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.364-370
    • /
    • 2014
  • In this paper, high reliable trench formation technique and a novel fabrication techniques for trench gate MOSFET is proposed which is a key to expend application of power MOSFET in the future. Trench structure has been employed device to improve Ron characteristics by shrinkage cell pitch size in DMOSFET and to isolate power device part from another CMOS device part in some power integrated circuit. A new process method for fabricating very high density trench MOSFETs using mask layers with oxide spacers and self-align technique is realized. This technique reduces the process steps, trench width and source and p=body region with a resulting increase in cell density and current driving capability and decrease in on resistance.

Effect of High-Temperature Post-Oxidation Annealing in Diluted Nitric Oxide Gas on the SiO2/4H-SiC Interface (4H-SiC와 산화막 계면에 대한 혼합된 일산화질소 가스를 이용한 산화 후속 열처리 효과)

  • In kyu Kim;Jeong Hyun Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.101-105
    • /
    • 2024
  • 4H-SiC power metal-oxide-semiconductor field effect transistors (MOSFETs) have been developed to achieve lower specific-on-resistance (Ron,sp), and the gate oxides have been thermally grown. The poor channel mobility resulting from the high interface trap density (Dit) at the SiO2/4H-SiC interface significantly affects the higher switching loss of the power device. Therefore, the development of novel fabrication processes to enhance the quality of the SiO2/4H-SiC interface is required. In this paper, NO post-oxidation annealing (POA) by using the conditions of N2 diluted NO at a high temperature (1,300℃) is proposed to reduce the high interface trap density resulting from thermal oxidation. The NO POA is carried out in various NO ambient (0, 10, 50, and 100% NO mixed with 100, 90, 50, and 0% of high purity N2 gas to achieve the optimized condition while maintaining a high temperature (1,300℃). To confirm the optimized condition of the NO POA, measuring capacitance-voltage (C-V) and current-voltage (I-V), and time-of-flight secondary-ion mass spectrometry (ToF-SIMS) are employed. It is confirmed that the POA condition of 50% NO at 1,300℃ facilitates the equilibrium state of both the oxidation and nitridation at the SiO2/4H-SiC interface, thereby reducing the Dit.