• Title/Summary/Keyword: Power IGBT

Search Result 632, Processing Time 0.03 seconds

Electrical Characteristics of 1,200 V Reverse Conducting-IGBT (1,200 V Reverse Conducting IGBT의 전기적 특성 분석)

  • Kim, Se Young;Ahn, Byoungsub;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.177-180
    • /
    • 2020
  • This paper focuses on the 1,200-V level reverse conducting-insulated gate bipolar transistor (RC-IGBT). The structure of the RC-IGBT has an n+ collector at the collector terminal. The breakdown voltage, Vth, Vce-sat, and turn-off time, and the electrical characteristics of a field-stop IGBT (FS-IGBT) and RC-IGBT are compared and analyzed using simulations. Based on the results, the RC-IGBT obtained a turn-off time of 320.6 ㎲ and a breakdown voltage of 1,720 V, while the FS-IGBT obtained a turn-off time of 742.2 ㎲ and a breakdown voltage of 1,440 V. Therefore, RC-IGBTs have faster on/off transitions and a higher breakdown voltage, which can reduce the size of the element.

IGBT Mesh-Topology Modeling And Its Application To Latch-Up Performance

  • Zhang H.;Duan F.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.22-25
    • /
    • 2001
  • A new mesh-topology model of IGBT is presented. It can be applied to the research of IGBT's static and dynamic latch-up (du/dt latch-up, overheat latch-up, overload latch-up, overvoltage latch-up) as well as the switching on-off behavior of the device. The overcurrent latch-up is analyzed.

  • PDF

A Study on Characteristic Improvement of IGBT with P-floating Layer

  • Kyoung, Sinsu;Jung, Eun Sik;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.686-694
    • /
    • 2014
  • A power semiconductor device, usually used as a switch or rectifier, is very significant in the modern power industry. The power semiconductor, in terms of its physical properties, requires a high breakdown voltage to turn off, a low on-state resistance to reduce static loss, and a fast switching speed to reduce dynamic loss. Among those parameters, the breakdown voltage and on-state resistance rely on the doping concentration of the drift region in the power semiconductor, this effect can be more important for a higher voltage device. Although the low doping concentration in the drift region increases the breakdown voltage, the on-state resistance that is increased along with it makes the static loss characteristic deteriorate. On the other hand, although the high doping concentration in the drift region reduces on-state resistance, the breakdown voltage is decreased, which limits the scope of its applications. This addresses the fact that breakdown voltage and on-state resistance are in a trade-off relationship with a parameter of the doping concentration in the drift region. Such a trade-off relationship is a hindrance to the development of power semiconductor devices that have idealistic characteristics. In this study, a novel structure is proposed for the Insulated Gate Bipolar Transistor (IGBT) device that uses conductivity modulation, which makes it possible to increase the breakdown voltage without changing the on-state resistance through use of a P-floating layer. More specifically in the proposed IGBT structure, a P-floating layer was inserted into the drift region, which results in an alleviation of the trade-off relationship between the on-state resistance and the breakdown voltage. The increase of breakdown voltage in the proposed IGBT structure has been analyzed both theoretically and through simulations, and it is verified through measurement of actual samples.

A Novel IGBT inverter module for low-power drive applications (소용량 전동기 구동용 새로운 IGBT 인버터 모듈)

  • Kim M. K.;Jang K. Y.;Choo B. H.;Lee J. B.;Suh B. S.;Kim T. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.158-162
    • /
    • 2002
  • This paper presents a novel 3-phase IGBT module called the SPM (Smart Power Module). This is a new design developed to provide a very compact, low cost, high performance and reliable motor drive system. Several distinct design concepts were used to achieve the highly integrated functionality in a new cost-effective small package. An overall description to the SPM is given and actual application issues such as electrical characteristics, circuit configurations, thermal performance and power ratings are discussed

  • PDF

A Study on Noise Reduction for Auxiliary Power Supply of railway Vehicle Using IGBT (IGBT를 이용한 전동차용 보조전원장치의 소음 저감에 관한 연구)

  • 노애숙;김주범;배기훈;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.280-286
    • /
    • 1998
  • In recent years, the interest in noise increases gradually and the low noise level becomes one of the important performances in electrical equipment for railway vehicle. In the auxiliary power supply, most of the noise is made by the current ripple of alternating current reactor(ACL) which filters the output voltage. And this current ripple results from the voltage harmonics across the ACL. So the noise can be reduced by eliminating the voltage harmonics across the ACL. This paper shows harmonic eliminating technique which is making gating signals of upper and lower inverter have a phase difference in the 12-step inverter type auxiliary power supply. This technique was proved by testing on the developed 180KVA auxiliary power supply using IGBT.

  • PDF

Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbines

  • Lee, Kihyun;Jung, Kyungsub;Suh, Yongsug;Kim, Changwoo;Cha, Taemin;Yoo, Hyoyol;Park, Sunsoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.386-387
    • /
    • 2013
  • This paper provides a comparison of high power semiconductor devices in 5MW-class Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) wind turbines. High power semiconductor devices of IGBT module type, IGBT press-pack type, and IGCT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on neutral-point clamed 3-level back-to-back type voltage source converter supplied from grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through the loss analysis considering both conduction and switching losses under the given operating conditions of 5MW-class PMSG wind turbines, particularly for the application in offshore wind farms. The loss analysis is confirmed through PLECS simulations. The comparison result shows that IGBT press-pack type semiconductor device has the highest efficiency and IGCT has the lowest cost factor considering the necessary auxiliary components.

  • PDF

Design and Characteristic Analysis of Snubber Circuits for IGBT devices (IGBT 소자를 위한 스너버회로 특성해석 및 설계)

  • Kim, Yoon-Ho;Lee, Jang-Sun;Kim, Yun-Bok;Ryu, Hong-Woo;Kim, Chan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2227-2229
    • /
    • 1997
  • IGBT는 턴-오프 동안 높은 dv/dt를 재인가하면 기생적 NPN 트랜지스터를 강제로 도전시킬 수 있는 변위전류를 유기하는데 이것은 제어의 손실과 잠재적인 디바이스의 손상을 가져오므로 적절한 스너버회로의 설계가 필요하다. 본 논문에서는 IGBT의 SPICE 모델을 이용하여 스위칭 특성을 해석하고, 적절한 스너버 회로의 설계 방식을 제시하였다.

  • PDF

An Excess Carrier Lifetime Extraction Method for Physics-based IGBT Models

  • Fu, Guicui;Xue, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.778-785
    • /
    • 2016
  • An excess carrier lifetime extraction method is derived for physics-based insulated gate bipolar transistor (IGBT) models with consideration of the latest development in IGBT modeling. On the basis of the 2D mixed-mode Sentaurus simulation, the clamp turn-off test is simulated to obtain the tail current. The proposed excess carrier lifetime extraction method is then performed using the simulated data. The comparison between the extracted results and actual lifetime directly obtained from the numerical device model precisely demonstrates the accuracy of the proposed method.

Modeling transient characteristics of NPT IGBT including trun-on condition (턴 온 상태를 고려한 NPT IGBT의 과도 특성 모델링)

  • Ryu, Se-Hwan;Lee, Yong-Kuk;Ahn, Hyoung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.327-330
    • /
    • 2003
  • In this work, current-voltage characteristics with time of NPT(Non-PunchThrough) IGBT is proposed during turn-on and turn-off by using analytical method. From the results, power loss at turn-off dominates the total electrical loss with respect to that at turn-on. The results have been compared with those of PSPICE and show the identical trend of power loss with each other.

  • PDF

Thermal Design of IGBT Module with Respect to Stability (IGBT소자의 열적 안정성을 고려한 방열설계)

  • Lee Joon-Yeob;Song Seok-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • Thermal design is required with considering thermal stability to verify the reliability of electric power device with using IGBT. Numerical analysis is performed to analyzed the change in thermal resistance with respect to the various thermal density of heating element. Correlations between thermal resistance and heat generation density are established. With using these correlations, performance curve is composed with respect to the change in thermal resistance of cooling conditions for natural convection and forced convection. Thermal fatigue is occurred at the Inside and outside of IGBT by repeated heat load. The crack is occurred between base plate and ceramic substrate for the inside. When the crack length is 4mm, the failure is occurred. Therefore, Thermal design method considering thermal density, thermal fatigue resistance is presented on this study and it is expected to thermal design with considering life prediction.

  • PDF