• Title/Summary/Keyword: Power Detection System

Search Result 1,407, Processing Time 0.03 seconds

Security Communication Implementation and Experiments for USN Fire Prevention System (USN 화재방재 시스템을 위한 보안 통신 구현 및 실험)

  • Kim, Young-Hyuk;Lim, Il-Kwon;Lee, Jae-Kwang
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.6
    • /
    • pp.99-104
    • /
    • 2010
  • USN Fire Prevention System is an intelligent system that detects the fire through the value which has got from a sensor such as temperature, humidity, intensity of illumination, acceleration, carbon dioxide(CO2) and so on. And then send it to the operator also use the algorithmic fire detection to operate fire extinguish system on. It is among U-Disaster Prevention System which has prevented fire lately. Configuration of the packet was designed to make the most of lightweight and fast processing for low power consumption. Recently listed in the encryption algorithm is applied each DES, 3DES, AES and HIGHT. So objective was to faster encryption than encryption of high-performance finally domestic standard encryption algorithm HIGHT were suitable for the fire prevention system needed frequent sensing time.

  • PDF

A Study on Detection of High Impedance Fault in Low Voltage DC Distribution System using Filter based on Mathematical Morphology (수학적 형태학 기반의 필터를 이용한 저압직류 배전계통의 고저항 지락고장 검출에 관한 연구)

  • Oh, Yun-Sik;Noh, Chul-Ho;Kim, Doo-Ung;Gwon, Gi-Hyeon;Han, Joon;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.89-95
    • /
    • 2015
  • As a solution of improving the energy efficiency in power system, Low Voltage DC (LVDC) distribution systems different from conventional ones have been constantly researched. As in conventional AC distribution system, LVDC distribution system can suffer from High Impedance Fault (HIF) which may cause a failure of protective relay due to relatively low change in magnitude of fault current. In order to solve the problem, a scheme for detecting HIFs is presented in this paper. Closing Opening Difference Operation (CODO) based on Mathematical Morphology (MM), one of the MM-based filters, is utilized to make fault signals discriminable. To verify performance of the scheme, a simple LVDC distribution system is modeled by using ElectroMagnetic Transient Program (EMTP) software. Computer simulations according to various conditions are performed and comparison studies with a scheme using Wavelet Transform (WT) in an aspect of simulation time are also conducted.

Performance Test of Sensorless Speed Control Logic for Gas Turbine Starter (가스터빈 기동장치 센서리스 속도제어로직 성능실험)

  • Ryu, Hoseon;Moon, jooyoung;Lee, Uitaek;Lee, Joohyun;Kang, Yunmo;Park, Manki
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • The gas turbine static starter rotates the stationary synchronous machine by the interaction of the rotor and the stator. The detection from the initial position of the rotor has been an important issue to drive with optimum torque. Previously, the gas turbine starter was used by attaching the encoder to the synchronous machine, but the position and velocity of the rotor have been estimated by sensor-less method until recently due to the difficulty in attaching and detaching and damage caused by the shaft voltage noise. In this paper, Rotor initial(stationary state) position estimation, forced commutation control(speed less than 10%), and natural commutation control(speed more than 10%) method using magnetic flux with integrated terminal voltage were presented and the sensor-less speed control performance was verified. As a result of making and evaluating the 29 kVA synchronous machine and the starting device, the performance of each control mode was satisfactory. Furthermore, the applied technology is expected to be used for the development of the gas turbine starter of tens of MW class and the field application.

Remote Water Level Monitoring System Based on Reflected Optical Power Detection with an Optical Coupler for Spent Fuel Pool at Nuclear Power Plant (전력상실시 광분배기 기반의 반사광 측정을 통한 사용후핵연료 저장조의 원격 수위 감시방법)

  • Kim, Sung-Man;Lee, Hoon-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.505-512
    • /
    • 2019
  • We propose a new method to monitor the water level of spent fuel pool in a nuclear power plant without electric power. We also analyze the performance and limitation of the proposed method. Our method is based on the reflected optical power at the end of optical fiber through a $1{\times}N$ optical coupler. We reveal that there is no problem to monitor the water level when using a $1{\times}8$ optical coupler. However, when a $1{\times}16$ optical coupler is used, only 15 out of 16 output ports can be used due to Rayleigh back-scattering. When a $1{\times}32$ optical coupler is used, only 25 out of 32 output ports can be used to monitor the water level.

Laser Tracking Analysis of Space Debris using SOLT System at Mt. Gamak (감악산 SOLT 시스템을 이용한 우주잔해물 레이저추적 성능분석)

  • Lim, Hyung-Chul;Park, Jong-Uk;Kim, Dong-Jin;Seong, Kipyung;Ka, Neung-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.830-837
    • /
    • 2015
  • Space debris has been a major issue recently for the space-active nations because its growing population is expected to increase the collision risk with operational satellites. Radar and electro-optical system has been used for space debris surveillance, which may cause unnecessary anti-collision manoeuvers due to their low tracking accuracy. So an additional tracking system is required to improve the predicted orbit accuracy and then to jude the anti-collision maneouvers more efficiently. The laser tracking system has been considered as an alternative to decrease these unnecessary manoeuvers. Korea Astronomy and Space Science Institute has been developing a space object laser tracking system which is capable of laser tracking for satellites with retro-reflectors and for space debris using high power laser, and satellite imaging using adaptive optics. In this study, the tracking capability is analyzed for space debris using high power laser based on link budget, false alarm probability and signal detection probability.

Remote Fault Detection in Conveyor System Using Drone Based on Audio FFT Analysis (드론을 활용하고 음성 FFT분석에 기반을 둔 컨베이어 시스템의 원격 고장 검출)

  • Yeom, Dong-Joo;Lee, Bo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.101-107
    • /
    • 2019
  • This paper proposes a method for detecting faults in conveyor systems used for transportation of raw materials needed in the thermal power plant and cement industries. A small drone was designed in consideration of the difficulty in accessing the industrial site and the need to use it in wide industrial site. In order to apply the system to the embedded microprocessor, hardware and algorithms considering limited memory and execution time have been proposed. At this time, the failure determination method measures the peak frequency through the measurement, detects the continuity of the high frequency, and performs the failure diagnosis with the high frequency components of noise. The proposed system consists of experimental environment based on the data obtained from the actual thermal power plant, and it is confirmed that the proposed system is useful by conducting virtual environment experiments with the drone designed system. In the future, further research is needed to improve the drone's flight stability and to improve discrimination performance by using more intelligent methods of fault frequency.

Determination Method of Security Threshold using Fuzzy Logic for Statistical Filtering based Sensor Networks (통계적 여과 기법기반의 센서 네트워크를 위한 퍼지로직을 사용한 보안 경계 값 결정 기법)

  • Kim, Sang-Ryul;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.27-35
    • /
    • 2007
  • When sensor networks are deployed in open environments, all the sensor nodes are vulnerable to physical threat. An attacker can physically capture a sensor node and obtain the security information including the keys used for data authentication. An attacker can easily inject false reports into the sensor network through the compromised node. False report can lead to not only false alarms but also the depletion of limited energy resource in battery powered sensor networks. To overcome this threat, Fan Ye et al. proposed that statistical on-route filtering scheme(SEF) can do verify the false report during the forwarding process. In this scheme, the choice of a security threshold value is important since it trades off detection power and energy, where security threshold value is the number of message authentication code for verification of false report. In this paper, we propose a fuzzy rule-based system for security threshold determination that can conserve energy, while it provides sufficient detection power in the SEF based sensor networks. The fuzzy logic determines a security threshold by considering the probability of a node having non-compromised keys, the number of compromised partitions, and the remaining energy of nodes. The fuzzy based threshold value can conserve energy, while it provides sufficient detection power.

  • PDF

Weighted Energy Detector for Detecting Uunknown Threat Signals in Electronic Warfare System in Weak Power Signal Environment (전자전 미약신호 환경에서 미상 위협 신호원의 검출 성능 향상을 위한 가중 에너지 검출 기법)

  • Kim, Dong-Gyu;Kim, Yo-Han;Lee, Yu-Ri;Jang, Chungsu;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.639-648
    • /
    • 2017
  • Electronic warfare systems for extracting information of the threat signals can be employed under the circumstance where the power of the received signal is weak. To precisely and rapidly detect the threat signals, it is required to use methods exploiting whole energy of the received signals instead of conventional methods using a single received signal input. To utilize the whole energy, numerous sizes of windows need to be implemented in a detector for dealing with all possible unknown length of the received signal because it is assumed that there is no preliminary information of the uncooperative signals. However, this grid search method requires too large computational complexity to be practically implemented. In order to resolve this complexity problem, an approach that reduces the number of windows by selecting the smaller number of representative windows can be considered. However, each representative window in this approach needs to cover a certain amount of interval divided from the considering range. Consequently, the discordance between the length of the received signal and the window sizes results in degradation of the detection performance. Therefore, we propose the weighted energy detector which results in improved detection performance comparing with the conventional energy detector under circumstance where the window size is smaller than the length of the received signal. In addition, it is shown that the proposed method exhibits the same performance under other circumstances.

Development of a Raman Lidar System for Remote Monitoring of Hydrogen Gas (수소 가스 원격 모니터링을 위한 라만 라이다 시스템 개발)

  • Choi, In Young;Baik, Sung Hoon;Park, Nak Gyu;Kang, Hee Young;Kim, Jin Ho;Lee, Na Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.166-171
    • /
    • 2017
  • Hydrogen gas is a green energy sources because it features no emission of pollutants during combustion. But hydrogen gas is very dangerous, being flammable and very explosive. Hydrogen gas detection is very important for the safety of a nuclear power plant. Hydrogen gas is generated by oxidation of nuclear fuel cladding during a critical accident, and leads to serious secondary damage in the containment building. This paper discusses the development of a Raman lidar system for remote detection and measurement of hydrogen gas. A small, portable Raman lidar system was designed, and a measurement algorithm was developed to quantitatively measure hydrogen gas concentration. To verify the capability of measuring hydrogen gas with the developed Raman lidar system, experiments were carried out under daytime outdoor conditions by using a gas chamber that can adjust the hydrogen gas density. As results, our Raman lidar system is able to measure a minimum density of 0.67 vol. % hydrogen gas at a distance of 20 m.

Development of a microcontroller-based control system for a total artificial heart (완전이식 인공심장을 위한 제어시스템의 개발에 관한 연구)

  • Choi, Won-Woo;Park, Seong-Keun;Kim, Hee-Chan;Min, Byeong-Gu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.127-134
    • /
    • 1995
  • For use in patients with severe forms of heart disease for which no surgical repair is possible, development of artificial hearts has many importance in point of economics, medical and industrial applications. To provide a sufficient cardiac output to the physiological demands of circulatory systems is the objective of control systems for an electromechanical artificial heart, which is based on the stable controller design for the motor in the artificial heart. In this paper, an implantable microcontroller-based brushless DC motor control system with the implantability, reliability, and stability is introduced. The developed control system for the artificial heart has the following advantages: (1) It is possible to be implanted in a body by realizing the fundamental functions such as a motor speed detection, proportional-intergral control, timer, and PWM generation through a software programming. (2) Thus, the power consumed in the controller is reduced. (3) The reliability and stability are improved through the reduction of electronic parts and line connetions at the controller. The performance of the artificial hearts and control system developed was evaluated through a series of mock circulatory experiments and a reliability test for one and half years. A sheep with the artificial heart and control system was survived for three days.

  • PDF