• Title/Summary/Keyword: Post structures

Search Result 943, Processing Time 0.024 seconds

Health assessment of RC building subjected to ambient excitation : Strategy and application

  • Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-201
    • /
    • 2022
  • Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

Effect of internal structures on the accuracy of 3D printed full-arch dentition preparation models in different printing systems

  • Teng Ma;Tiwu Peng;Yang Lin;Mindi Zhang;Guanghui Ren
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.145-154
    • /
    • 2023
  • PURPOSE. The objective of this study was to investigate how internal structures influence the overall and marginal accuracy of full arch preparations fabricated through additive manufacturing in different printing systems. MATERIALS AND METHODS. A full-arch preparation digital model was set up with three internal designs, including solid, hollow, and grid. These were printed using three different resin printers with nine models in each group. After scanning, each data was imported into the 3D data processing software together with the master cast, aligned and trimmed, and then put into the 3D data analysis software again to compare the overall and marginal deviation whose results are expressed using root mean square values and color maps. To evaluate the trueness of the resin model, the test data and reference data were compared, and the precision was evaluated by comparing the test data sets. Color maps were observed for qualitative analysis. Data were statistically analyzed by one-way analysis of variance and Bonferroni method was used for post hoc comparison (α = .05). RESULTS. The influence of different internal structures on the accuracy of 3D printed resin models varied significantly (P < .05). Solid and grid models showed better accuracy, while the hollow model exhibited poor accuracy. The color maps show that the resin models have a tendency to shrink inwards. CONCLUSION. The internal structure design influences the accuracy of the 3D printing model, and the effect varies in different printing systems. Irrespective of the kind of printing system, the printing accuracy of hollow model was observed to be worse than those of solid and grid models.

Vibrational energy flow in steel box girders: Dominant modes and components, and effective vibration reduction measures

  • Derui Kong;Xun Zhang;Cong Li;Keer Cui
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.347-362
    • /
    • 2024
  • Controlling vibrations and noise in steel box girders is important for reducing noise pollution and avoiding discomfort to residents of dwellings along bridges. The fundamental approach to solving this problem involves first identifying the main path of transmission of the vibration energy and then cutting it off by using targeted measures. However, this requires an investigation of the characteristics of flow of vibration energy in the steel box girder, whereas most studies in the area have focused on analyzing its single-point frequency response and overall vibrations. To solve this problem, this study examines the transmission of vibrations through the segments of a steel box girder when it is subjected to harmonic loads through structural intensity analysis based on standard finite element software and a post-processing code created by the authors. We identified several frequencies that dominated the vibrations of the steel box girder as well as the factors that influenced their emergence. We also assessed the contributions of a variety of vibrational waves to power flow, and the results showed that bending waves were dominant in the top plate and in-plane waves in the vertical plate of the girder. Finally, we analyzed the effects of commonly used stiffened structures and steel-concrete composite structures on the flow of vibration energy in the girder, and verified their positive impacts on energy regionalization. In addition to providing an efficient tool for the relevant analyses, the work here informs research on optimizing steel box girders to reduce vibrations and noise in them.

SPMTool: A computer application for analysis of reinforced concrete structures by the Stringer-Panel Method - Validation of nonlinear models

  • Andre Felipe Aparecido de Mello;Leandro Mouta Trautwein;Luiz Carlos de Almeida;Rafael Alves de Souza
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • The design of disturbed regions in reinforced concrete structures usually applies the well known Strut and Tie Method (STM). As an alternative, the Stringer-Panel Method (SPM), an intermediate model between STM and the Finite Element Method (FEM), consists in dividing a structure into two distinct elements: the stringers (which carry axial forces) and panels (which carry shear forces). SPM has already showed good applicability in manual calculations and computer implementations, and its most known application was SPanCAD, an AutoCAD plugin for linear and nonlinear analysis by SPM. Unfortunately, SPanCAD was discontinued by the developers, and it's not compatible with the most recent versions of AutoCAD. So, this paper aims to present a computer program that was developed as an upgrade to the latter: the Stringer Panel Modelling Tool (SPMTool), which is intended to be an auxiliary design tool and it presents improvements, in comparison to SPanCAD. It is possible to execute linear and nonlinear analysis by three distinct formulations: Modified Compression Field Theory (MCFT), Disturbed Stress Field Model (DSFM) and Softened Membrane Model (SMM). The nonlinear results were compared to experimental data of reinforced concrete elements that were not designed by SPM; these elements were also analyzed in SPanCAD. On overall, SPMTool made more realistic predictions to the behavior of the analyzed structures than SPanCAD. Except for DSFM predictions for corbels (1.24), in overall average, the ultimate load predictions were conservative (0.85 to 0.98), which is a good aspect for a design tool. On the other hand, the cracking load predictions presented overestimations (1.06 to 1.47) and higher variations (25.59% to 34.25%) and the post-cracking behavior could not be accurately predicted; for this use case, a more robust finite element software is recommended.

Studies on the Atomic and Electronic Structures of Cu Adsorbed $Si(100)-2\times1$ Surface (Cu가 흡착된 $Si(100)-2\times1$ 표면의 원자구조 및 전자구조 연구)

  • 박래준;김정선;황찬국;안기석;박종윤
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.293-299
    • /
    • 1998
  • We have investigated the atomic and electronic structures of Cu-adsorbed Si(100)-2$\times$1 surface, by using LEED and UPS. In the UPS spectra, the weak structures (peaks) related to Cu silicide appeared for low coverages less than 1.3 ML at room temperature, and the intensity of Cu 3d band rapidly increased with respect to Cu coverages. The Cu silicide peaks become clear after Cu deposition at room temperature followed by high temperature annealing ($\geq 300^{\circ}C$) or for Cu deposited surface at the substrate temperature of $400^{\circ}C$. On the other hand, these structures disappeared by annealing at $750^{\circ}C$. At very low coverage, a surface state near Fermi level $(E_F)$ was observed at $400^{\circ}C$. According to the rigid band model, it seems to be originated from the surface empty state occupied partially with Cu 4s electron. In the LEED patterns, no Cu-induced superstructure observed for RT-depositions and post annealing, while there were several surface structures which depend on substrate temperatures and coverages. we observed the clean surface 2$\times$1+2$\times$2 phase for 1.5 ML at $400^{\circ}C$, the clean surface 2$\times$1+5$\times$1 phase for 0.5 ML at $450^{\circ}C$ and the clean surface 2$\times$1+2$\times$2+5$\times$2+5$\times$5+10$\times$2 mixed phases for 3 ML at $450^{\circ}C$.

  • PDF

A Study on Machine Learning-Based Real-Time Automated Measurement Data Analysis Techniques (머신러닝 기반의 실시간 자동화계측 데이터 분석 기법 연구)

  • Jung-Youl Choi;Jae-Min Han;Dae-Hui Ahn;Jee-Seung Chung;Jung-Ho Kim;Sung-Jin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.685-690
    • /
    • 2023
  • It was analyzed that the volume of deep excavation works adjacent to existing underground structures is increasing according to the population growth and density of cities. Currently, many underground structures and tracks are damaged by external factors, and the cause is analyzed based on the measurement results in the tunnel, and measurements are being made for post-processing, not for prevention. The purpose of this study is to analyze the effect on the deformation of the structure due to the excavation work adjacent to the urban railway track in use. In addition, the safety of structures is evaluated through machine learning techniques for displacement of structures before damage and destruction of underground structures and tracks due to external factors. As a result of the analysis, it was analyzed that the model suitable for predicting the structure management standard value time in the analyzed dataset was a polynomial regression machine. Since it may be limited to the data applied in this study, future research is needed to increase the diversity of structural conditions and the amount of data.

Verification of Seismic Safety of Nuclear power Plants (원자력발전소의 내진 안정성 확보)

  • 이종림
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.3-16
    • /
    • 2000
  • The ultimate safety-goal of nuclear power plants should be targeted at preventing release of nuclear radiation compared to general structures, Accordingly the phases of siting design construction and operation of NPPs are severely regulated by codes of aseismic design so as to assure safety of NPPs. To accomplish this goal strict quality assurace and seismic qualification tests should be conducted for all phases of NPP construction. In addition seismic monitoring systems should be installed and always in operation to provide proper post-earhquake procedures. Besides periodic safety review should be performed during operation along with the seismic margin assessment. In this paper general procedures to secure seismic safety of NPPs are systematically reviewed and additional considerations for improvement are suggested.

  • PDF

Behavior of Traditional Wood Frames Under Earthquake Loading (전통 목조 프레임구조의 지진하중에 대한 거동 특성)

  • 홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.304-313
    • /
    • 2000
  • This study presents the behavior of traditional wood structures of national heritage under earthquake loadings. A series of experimental program for four wood frames was performed to investigate characteristics of initial stiffness, behavior after ultimate loads, and hysteretic behaviors. The frames consisted of columns with a lintel by special joint and a bare frame was infilled by a mud wall. A pushover est was aimed to estimate the range of ultimate rotation of connection as a pilot test for cyclic load tests. One of frames infilled by a mud wall showed a larger stiffness than those of bare frames due to a strut action in the diagonal direction. However, the post yielding stiffness of the infilled frame was not increased.

  • PDF