DOI QR코드

DOI QR Code

SPMTool: A computer application for analysis of reinforced concrete structures by the Stringer-Panel Method - Validation of nonlinear models

  • Received : 2022.02.11
  • Accepted : 2023.11.20
  • Published : 2024.07.25

Abstract

The design of disturbed regions in reinforced concrete structures usually applies the well known Strut and Tie Method (STM). As an alternative, the Stringer-Panel Method (SPM), an intermediate model between STM and the Finite Element Method (FEM), consists in dividing a structure into two distinct elements: the stringers (which carry axial forces) and panels (which carry shear forces). SPM has already showed good applicability in manual calculations and computer implementations, and its most known application was SPanCAD, an AutoCAD plugin for linear and nonlinear analysis by SPM. Unfortunately, SPanCAD was discontinued by the developers, and it's not compatible with the most recent versions of AutoCAD. So, this paper aims to present a computer program that was developed as an upgrade to the latter: the Stringer Panel Modelling Tool (SPMTool), which is intended to be an auxiliary design tool and it presents improvements, in comparison to SPanCAD. It is possible to execute linear and nonlinear analysis by three distinct formulations: Modified Compression Field Theory (MCFT), Disturbed Stress Field Model (DSFM) and Softened Membrane Model (SMM). The nonlinear results were compared to experimental data of reinforced concrete elements that were not designed by SPM; these elements were also analyzed in SPanCAD. On overall, SPMTool made more realistic predictions to the behavior of the analyzed structures than SPanCAD. Except for DSFM predictions for corbels (1.24), in overall average, the ultimate load predictions were conservative (0.85 to 0.98), which is a good aspect for a design tool. On the other hand, the cracking load predictions presented overestimations (1.06 to 1.47) and higher variations (25.59% to 34.25%) and the post-cracking behavior could not be accurately predicted; for this use case, a more robust finite element software is recommended.

Keywords

References

  1. ACI318 (2019), Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA.
  2. Argyris, J.H. and Kelsey, S. (1960), Part I: General Theory, 1st Edition, Butterworths, London, UK.
  3. Ashour, A.F. and Rishi, G. (2000), "Tests of reinforced concrete continuous deep beams with web openings", ACI Struct. J., 97(3), 418-426. https://doi.org/10.14359/4636.
  4. Autodesk (2020), Autodesk AutoCAD 2021 Developer and ObjectARX Help, Autodesk; San Franciso, CA, USA. https://help.autodesk.com/view/OARX/2021/ENU/
  5. Birrcher, D., Tuchscherer, R., Huizinga, M., Bayrak, O., Wood, S.L. and Jirsa, J.O. (2009), "Strength and serviceability design of reinforced concrete deep beams", Technical report FHWA/TX-09/0-5253-1; University of Texas, Austin, TX, USA.
  6. Blaauwendraad, J. (1994), Design of Structural Concrete with a Stringer-Panel-Model (SPM), ETH Zurich, Zurich, Switzerland.
  7. Blaauwendraad, J. and Hoogenboom, P.C.J. (1997), "Discrete elements in structural concrete design", Heron, 42(3), 159-168.
  8. Blaauwendraad, J. and Hoogenboom, P.C.J. (2002), "Design instrument SPanCAD for shear walls and D-regions", Proceedings of the 1st FIB Congress, Osaka, Japan, October.
  9. Chaea, H. and Yun, Y. (2015), "Strut-tie model for two-span continuous RC deep beams", Comput. Concrete, 16(3), 357-380. https://doi.org/10.12989/cac.2015.16.3.357.
  10. Chakrabarti, P.R., Farahi, D.J. and Kashou, S.I. (1989), "Reinforced and precompressed concrete corbels- An experimental study", ACI Struct. J., 86(4), 405-412. https://doi.org/10.14359/2927.
  11. Chandrupatla, T.R. and Belegundu, A.D. (2012), Introduction to Finite Elements in Engineering Fourth Edition, Pearson Education, Harlow, Essex, UK.
  12. Demir, A. and Caglar, N. (2020), "Numerical determination of crack width for reinforced concrete deep beams", Comput. Concrete, 25(3), 193-204. https://doi.org/10.12989/cac.2020.25.3.193.
  13. Foster, S.J., Powell, R.E. and Selim, H.S. (1996), "Performance of high-strength concrete corbels", ACI Struct. J., 93(5), 555-563. https://doi.org/10.14359/9714.
  14. Gulsan, M.E., Cevik, A. and Mohmmad, S.H. (2021), "Crack pattern and failure mode prediction of SFRC corbels: Experimental and numerical study", Comput. Concrete, 28(5), 507-519. https://doi.org/10.12989/cac.2021.28.5.507.
  15. Hauksdottir, B. (2007), "Analysis of a reinforced concrete shear wall", Master Dissertation, Technical University of Denmark, Lyngby, Denmark.
  16. Hoogenboom, P.C.J. (1993), "Het staaf-paneel-model", Master Dissertation, Delft University of Technology, Delft, The Netherlands.
  17. Hoogenboom, P.C.J. (1998), "Discrete elements and nonlinearity in design of structural concrete walls", Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.
  18. Hoogenboom, P.C.J. and Blaauwendraad, J. (2000), "Quadrilateral shear panel", Eng. Struct., 22, 1690-1698. https://doi.org/10.1016/s0141-0296(99)00061-9.
  19. Hsu, T.T.C. and Mo, Y.L. (2010), Unified Theory of Concrete Structures, 1st Edition, Wiley, Chichester, West Sussex, UK.
  20. Hsu, T.T.C. and Zhu, R.R.H. (2002), "Softened membrane model for reinforced concrete elements in shear", ACI Struct. J., 99(4), 460-469. https://doi.org/10.14359/12115.
  21. Ismail, K.S., Guadagnini, M. and Pilakoutas, K. (2016), "Shear behavior of reinforced concrete deep beams", ACI Struct. J., 114(1), 87-99. https://doi.org/10.14359/51689151.
  22. Jasim, W.A., Allawi, A.A. and Oukaili, N.K.A. (2019), "Effect of size and location of square web openings on the entire behavior of reinforced concrete deep beams", Civil Eng. J., 5(1), 209. https://doi.org/10.28991/cej-2019-03091239.
  23. Kaern, J.C. (1979), "The stringer method applied to discs with holes", Technical report; International Association for Bridge and Structural Engineering, Copenhagen, Denmark.
  24. Kim, N. (2015), Introduction to Nonlinear Finite Element Analysis, Springer, New York, NY, USA.
  25. Larsen, A.G. (2013), Units.NET Repository on GitHub. https://github.com/angularsen/UnitsNet
  26. Lundgren, H. (1949), Cylindrical Shells, The Danish Technical Press, Copenhagen, Denmark.
  27. Math.NET (2020), Math.NET Numerics Project. https://numerics.mathdotnet.com/
  28. MC2010 (2013), Fib Model Code for Concrete Structures 2010, International Federation for Structural Concrete, Lausanne, Switzerland.
  29. Mello, A.F.A. (2015), "Analise e dimensionamento de vigas-parede em concreto armado utilizando o Metodo Biela-Painel", Master Dissertation, Universidade Estadual de Maringa, Maringa, PR, Brazil.
  30. Mello, A.F.A. (2020a), Material Repository on GitHub. https://github.com/andrefmello91/Material
  31. Mello, A.F.A. (2020b), Reinforced Concrete Membrane Repository on GitHub. https://github.com/andrefmello91/Reinforced-Concrete-Membrane
  32. Mello, A.F.A. (2021a), Finite Element Analysis Repository on GitHub. https://github.com/andrefmello91/FEM-Analysis
  33. Mello, A.F.A. (2021b), SPM Elements Repository on GitHub. https://github.com/andrefmello91/SPMElements
  34. Mello, A.F.A. (2021c), SPMTool Repository on GitHub. https://github.com/andrefmello91/SPMTool
  35. Mello, A.F.A. (2023), National Institute of Industrial Property: Computer Program Registration Certificate BR512023001318-8 (SPMTool - Stringer-Panel Modelling Tool).
  36. Mello, A.F.A. and Souza, R.A. (2016), "Analysis and design of reinforced concrete deep beams by a manual approach of stringer-panel method", Lat. Am. J. Solid. Struct., 13(6), 1126-1151. https://doi.org/10.1590/1679-78252623.
  37. Mello, A.F.A., Trautwein, L.M., Almeida, L.C. and Souza, R.A. (2021), "Development of an open source library for reinforced concrete membrane element analysis", Struct., 34, 4882-4891. https://doi.org/10.1016/j.istruc.2021.10.043.
  38. NBR6118 (2014), Design of Concrete Structures - Procedure, Brazilian Association of Technical Standards, Rio de Janeiro, RJ, Brazil.
  39. Nielsen, M.P. (1971), "On the strength of reinforced concrete discs", Acta Polytech. Scandinav. Civil Eng. Build. Constr. Ser., 70(1), 1.
  40. Parol, J., Al-Qazweenia, J. and Salamb, S.A. (2018), "Analysis of reinforced concrete corbel beams using Strut and Tie models", Comput. Concrete, 21(1), 95-102. https://doi.org/10.12989/cac.2018.21.1.095.
  41. Refer, D. (2012), "Computer based FE analysis of reinforced concrete walls by the stringer method", Master Dissertation, Aalborg University, Aalborg, Denmark.
  42. Rodriguez, A. (2017), LiveCharts for .NET. https://www.lvcharts.net
  43. Schlaich, J., Schafer, K. and Jennewein, M. (1987), "Toward a consistent design of structural concrete", PCI J., 32(3), 74-150. https://doi.org/10.15554/pcij.05011987.74.150.
  44. Silva, J.G.T. (2004), "Contribuicao ao projeto de elementos estruturais de concreto armado com descontinuidades atraves do modelo de paineis enrijecidos", Master Dissertation, Universidade Federal de Alagoas, Maceio, AL, Brazil.
  45. Simone, A. (1998), "Progetto di strutture in C. A. con un Modello a Pannelli e Correnti", Ph.D. Dissertation, Politecnico di Milano, Milan, Italy.
  46. Souza, R.A. (2012), "Abordagem manual e computacional do "Stringer and Panel Method" para analise e dimensionamento de paredes em concreto estrutural", Proceedings of the 54th Brazilian Concrete Congress, Maceio, AL, Brazil.
  47. Vecchio, F.J. (2000), "Disturbed stress field model for reinforced concrete: Formulation", J. Struct. Eng., 126(9), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070).
  48. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(22), 219-231. https://doi.org/10.14359/10416.
  49. Vieira, A.A., Melo, G.S.S.A. and Miranda, A.C.O. (2020), "RC deep beams with unconventional geometries: Experimental and numerical analyses", Comput. Concrete, 26(4), 351-365. https://doi.org/10.12989/cac.2020.26.4.351.