• Title/Summary/Keyword: Post annealing effect

Search Result 224, Processing Time 0.021 seconds

Leakage Current of Capacitive BST Thin Films (BST 축전박막의 누설전류 평가)

  • 인태경;안건호;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.803-810
    • /
    • 1997
  • Ba0.5Sr0.5TiO3 thin films were deposited by RF magnetron sputliring method in order to clarify the anneal condition and doping effect on loakage current Nb and Al were selected as electron donor and acceptor dopants respectively, in the BST films because they have been known to have nearly same ionic radii as Ti and thought to substitute Ti sites to influence the charge carrier and the acceptor state adjacent to the gram boundary. BST thin films prepared in-situ at elevated temperature showed selatively high leakage current density and low breakdown voltage. In order to achieve smooth surface and to improve electrical properties, BST thin films were deposited at room temperature and annealed at elevated temperature. Post-annealed BST thin films showed smoother surface morphology and lower leakage current density than in-situ prepared thin films. The leakage current density of Al doped thin films was measured to be around 10-8A/cm2, which is much lower than those of undoped and Nb doped BST films. The result clearly demonstrates that higher Schottky barrier and lower mobile charge carrier concentration achieved by annealing in the oxygen atmosphere and by Al doping are desirable for reducing leakage current density in BST thin films.

  • PDF

Effect of the Deposition Time onto Structural Properties of Cu2ZnSnS4 Thin Films Deposited by Pulsed Laser Deposition (펄스 레이저 증착법으로 제작한 Cu2ZnSnS4 박막의 구조 특성 변화에 대한 증착 시간 효과)

  • Byeon, Mirang;Bae, Jong-Seong;Hong, Tae-Eun;Jeong, Euh-Duck;Kim, Shinho;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • The $Cu_2ZnSnS_4$ (CZTS) thin film solar cell is a candidate next generation thin film solar cell. For the application of an absorption layer in solar cells, CZTS thin films were deposited by pulsed laser deposition (PLD) at substrate temperature of $300^{\circ}C$ without post annealing process. Deposition time was carefully adjusted as the main experimental variable. Regardless of deposition time, single phase CZTS thin films are obtained with no existence of secondary phases. Irregularly-shaped grains are densely formed on the surface of CZTS thin films. With increasing deposition time, the grain size increases and the thickness of the CZTS thin films increases from 0.16 to $1{\mu}m$. The variation of the surface morphology and thickness of the CZTS thin films depends on the deposition time. The stoichiometry of all CZTS thin films shows a Cu-rich and S-poor state. Sn content gradually increases as deposition time increases. Secondary ion mass spectrometry was carried out to evaluate the elemental depth distribution in CZTS thin films. The optimal deposition time to grow CZTS thin films is 150 min. In this study, we show the effect of deposition time on the structural properties of CZTS thin film deposited on soda lime glass (SLG) substrate using PLD. We present a comprehensive evaluation of CZTS thin films.

Effect of Cu/Al powder mixing on Dy diffusion in Nd-Fe-B sintered magnets treated with a grain boundary diffusion process (입계확산처리된 Nd-Fe-B 소결자석에서 Dy의 확산에 미치는 Cu와 Al 분말의 혼합 효과)

  • Lee, Min Woo;Jang, Tae Suk
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.432-436
    • /
    • 2016
  • We investigate the microstructural and magnetic property changes of $DyH_2$, $Cu+DyH_2$, and $Al+DyH_2$ diffusion-treated NdFeB sintered magnets with the post annealing (PA) temperature. The coercivity of all the diffusion-treated magnets increases with increasing heat treatment temperature except at $910^{\circ}C$, where it decreases slightly. Moreover, at $880^{\circ}C$, the coercivity increases by 3.8 kOe in Cu and 4.7 kOe in Al-mixed $DyH_2$-coated magnets, whereas this increase is relatively low (3.0 kOe) in the magnet coated with only $DyH_2$. Both Cu and Al have an almost similar effect on the coercivity improvement, particularly over the heat treatment temperature range of $790-880^{\circ}C$. The diffusivity and diffusion depth of Dy increases in those magnets that are treated with Cu or Al-mixed $DyH_2$, mainly because of the comparatively easy diffusion path provided by Cu and Al owing to their solubility in the Nd-rich grain boundary phase. The formation of a highly anisotropic $(Nd,\;Dy)_2Fe_{14}B$ phase layer, which acts as the shell in the core-shell-type structure so as to prevent the reverse domain movement, is the cause of enhanced coercivity of diffusion-treated Nd-Fe-B magnets.

A Study on the Resistve Switching Characteristic of Parallel Memristive Circuit of Lithium Ion Based Memristor and Capacitor (리튬 이온 기반 멤리스터 커패시터 병렬 구조의 저항변화 특성 연구)

  • Kang, Seung Hyun;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.41-45
    • /
    • 2021
  • In this study, in order to secure the high reliability of the memristor, we adopted a patterned lithium filament seed layer as the main agent for resistive switching (RS) characteristic on the 30 nm thick ZrO2 thin film at the device manufacturing stage. Lithium filament seed layer with a thickness of 5 nm and an area of 5 ㎛ × 5 ㎛ were formed on the ZrO2 thin film, and various electrode areas were applied to investigate the effect of capacitance on filament type memristive behavior in the parallel memristive circuit of memristor and capacitor. The RS characteristics were measured in the samples before and after 250℃ post-annealing for lithium metal diffusion. In the case of conductive filaments formed by thermal diffusion (post-annealed sample), it was not available to control the filament by applying voltage, and the other hand, the as-deposited sample showed the reversible RS characteristics by the formation and rupture of filaments. Finally, via the comparison of the RS characteristics according to the electrode area, it was confirmed that capacitance is an important factor for the formation and rupture of filaments.

Improvement of Mechanical Properties of Mg alloys through Control of Grain Size and Texture (결정립크기와 집합조직제어를 통한 마그네슘 합금의 기계적 성질 개선)

  • Kim, W.J.;Lee, J.B.;Kim, W.Y.;Jeong, H.G.;Park, J.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • The effects of lowering ECAP temperature during ECAP process and Post-ECAP annealing on microstructure, texture and mechanical properties of the AZ31 alloys have been investigated in the present study. The as-extruded materials were ECAP processed to 2 passes at 553K prior to subsequent pressing up to 6 passes at 523K or 493K. When this method of lowering ECAP temperature during ECAP was used, the rods could be successfully deformed up to 6 passes without any surface cracking. Grain refinement during ECAP process at 553K might have helped the material to endure further straining at lower deformation temperatures probably by increasing the strain accommodation effect by grain boundary sliding, causing stress relaxation. Texture modification during ECAP has a great influence on the strength of Mg alloys because HCP metals have limited number of slip systems. As slip is most prone to take place on basal planes in Mg at room temperature, the rotation of high fraction of basal planes to the directions favorable for slip as in ECAP decreases the yield stress appreciably. The strength of AZ31 Mg alloys increases with decrease of grain size if the texture is constant though ECAP deformation history is different. A standard positive strength dependence on the grain size for Mg alloys with the similar texture (Fig. 1) supports that the softening of ECAPed Mg alloys (a negative slope) typically observed despite the significant grain refinement is due to the texture modification where the rotation of basal planes occurs towards the orientation for easier slip. It could be predicted that if the original fiber texture is restored after ECAP treatment yielding marked grain refinement, yield stress as high as 500 MPa will be obtained at the grain size of ${\sim}1{\mu}m$. Differential speed rolling (DSR) with a high speed ratio between the upper and lower rolls was applied to alter the microstructure and texture of the AZ31 sheets. Significant grain refinement took place during the rolling owing to introduction of large shear deformation. Grain size as small as $1.4{\mu}m$ could be obtained at 423K after DSR. There was a good correlation between the (0002) pole intensity and tensile elongation. This result indicates that tensile ductility improvement in the asymmetrically rolled AZ31 Mg alloys is closely related to the weakening of basal texture during DSR. Further basal texture weakening occurred during annealing after DSR. According to Hall-Petch relation shown in Fig. 1, the strength of the asymmetrically rolled AZ31 is lower than that of the symmetrically rolled one when compared at the same grain size. This result was attributed to weakening of fiber texture during DSR. The DSRed AZ31, however, shows higher strength than the ECAPed AZ31 where texture has been completely replaced by a new texture associated with high Schmid factors.

  • PDF

Thermal Stability Improvement or Ni Germanosilicide Using NiPt/Co/TiN and the Effect of Ge Fraction (x) in $Si_{l-x}Ge_x$ (NiPt/Co/TiN을 이용한 Ni Germanosilicide 의 열안정성 향상 및 Ge 비율 (x) 에 따른 특성 분석)

  • Yun Jang-Gn;Oh Soon-Young;Huang Bin-Feng;Kim Yong-Jin;Ji Hee-Hwan;Kim Yong-Goo;Cha Han-Seob;Heo Sang-Bum;Lee Jeong-Gun;Wang Jin-Suk;Lee Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.391-394
    • /
    • 2004
  • In this study, highly thermal stable Ni Germanosilicide has been utilized using NiPt alloy and novel NiPt/Co/TiN tri-layer. And, the Ni Germanosilicide Properties were characterized according to different Ge ratio (x) in $Si_{l-x}Ge_x$ for the next generation CMOS application. The sheet resistance of Ni Germanosilicide utilizing pure-Ni increased dramatically after the post-silicidation annealing at $600^{\circ}C$ for 30 min. Moreover, more degradation was found as the Ge fraction increases. However, using the proposed NiPt/Co/TiN tri-layer, low temperature silicidation and wide range of RTP process window were achieved as well as the improvement of the thermal stability according to different Ge fractions by the subsequent Co and TiN capping layer above NiPt on the $Si_{l-x}Ge_x$. Therefore, highly thermal immune Ni Germanosilicide up to $600^{\circ}C$ for 30 min is utilized using the NiPt/Co/TiN tri-layer promising for future SiGe based ULSI technology.

  • PDF

Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films (Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향)

  • Lee, Hong-Chan;Choi, Won-Kook;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

Influence of ZnO Thickness on the Optical and Electrical Properties of GZO/ZnO Bi-layered Films

  • Kim, Sun-Kyung;Kim, So-Young;Kim, Seung-Hong;Jeon, Jae-Hyun;Gong, Tae-Kyung;Kim, Daeil;Yoon, Dae Young;Choi, Dong Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.198-200
    • /
    • 2014
  • 100 nm thick Ga doped ZnO (GZO) thin films were deposited with RF magnetron sputtering on polyethylene terephthalate (PET) and ZnO coated PET substrate and then the effect of the ZnO thickness on the optical and electrical properties of the GZO films was investigated. GZO single layer films had an optical transmittance of 83.7% in the visible wavelength region and a sheet resistance of $2.41{\Omega}/{\square}$, while the optical and electrical properties of the GZO/ZnO bi-layered films were influenced by the thickness of the ZnO buffer layer. GZO films with a 20 nm thick ZnO buffer layer showed a lower sheet resistance of $1.45{\Omega}/{\square}$ and an optical transmittance of 85.9%. As the thickness of ZnO buffer layer in GZO/ZnO bi-layered films increased, both the conductivity and optical transmittance in the visible wavelength region were increased. Based on the figure of merit (FOM), it can be concluded that the ZnO buffer layer effectively increases the optical and electrical performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.

The Influence of Al Underlayer on the Optical and Electrical Properties of GZO/Al Thin Films

  • Kim, Sun-Kyung;Kim, So-Young;Kim, Seung-Hong;Jeon, Jae-Hyun;Gong, Tae-Kyung;Kim, Daeil;Choi, Dong-Hyuk;Son, Dong-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.321-323
    • /
    • 2013
  • 100 nm thick Ga doped ZnO (GZO) thin films were deposited with DC and RF magnetron sputtering at room temperature on glass substrate and Al coated glass substrate, respectively. and the effect of the Al underlayer on the optical and electrical properties of the GZO films was investigated. As-deposited GZO single layer films had an optical transmittance of 80% in the visible wavelength region, and sheet resistance of 1,516 ${\Omega}/{\Box}$, while the optical and electrical properties of GZO/Al bi-layered films were influenced by the thickness of the Al buffer layer. GZO films with 2 nm thick Al film show a lower sheet resistance of 990 ${\Omega}/{\Box}$, and an optical transmittance of 78%. Based on the figure of merit (FOM), it can be concluded that the thin Al buffer layer effectively increases the performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.

The effect of post-annealing temperature on $Bi_{3.25}La_{0.75}Ti_3O_{12}$ thin films deposited by RF magnetron sputtering (RF magnetron sputtering법에 의한 BLT 박막의 후열처리 온도에 관한 영향)

  • Lee, Ki-Se;Lee, Kyu-Il;Park, Young;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.624-627
    • /
    • 2003
  • The BLT thin-films were one of the promising ferroelectric materials with a good leakage current and degradation behavior on Pt electrode. The BLT target was sintered at $1100^{\circ}C$ for 4 hours at the air ambient. $Bi_{3.25}La_{0.75}Ti_3O_{12}$ (BLT) thin-film deposited on $Pt/Ti/SIO_2/Si$ wafer by rf magnetron sputtering method. At annealed $700^{\circ}C$, (117) and (006) peaks appeared the high intensity. The hysteresis loop of the BLT thin films showed that the remanent polarization ($2Pr=Pr^+-Pr^-$) was $16uC/cm^2$ and leakage current density was $1.8{\times}10^{-9}A/cm^2$ at 50 kV/cm with coersive electric field when BLT thin-films were annealed at $700^{\circ}C$. Also, the thin film showed fatigue property at least up to $10^{10}$ switching bipolar pulse cycles under 7 V. Therefore, we induce access to optimum fabrication condition of memory device application by rf-magnetron sputtering method in this report.

  • PDF