DOI QR코드

DOI QR Code

A Study on the Resistve Switching Characteristic of Parallel Memristive Circuit of Lithium Ion Based Memristor and Capacitor

리튬 이온 기반 멤리스터 커패시터 병렬 구조의 저항변화 특성 연구

  • Kang, Seung Hyun (Department of Materials Science & Engineering, Kangwon National University) ;
  • Lee, Hong-Sub (Department of Materials Science & Engineering, Kangwon National University)
  • 강승현 (강원대학교 재료공학과) ;
  • 이홍섭 (강원대학교 재료공학과)
  • Received : 2021.11.30
  • Accepted : 2021.12.08
  • Published : 2021.12.30

Abstract

In this study, in order to secure the high reliability of the memristor, we adopted a patterned lithium filament seed layer as the main agent for resistive switching (RS) characteristic on the 30 nm thick ZrO2 thin film at the device manufacturing stage. Lithium filament seed layer with a thickness of 5 nm and an area of 5 ㎛ × 5 ㎛ were formed on the ZrO2 thin film, and various electrode areas were applied to investigate the effect of capacitance on filament type memristive behavior in the parallel memristive circuit of memristor and capacitor. The RS characteristics were measured in the samples before and after 250℃ post-annealing for lithium metal diffusion. In the case of conductive filaments formed by thermal diffusion (post-annealed sample), it was not available to control the filament by applying voltage, and the other hand, the as-deposited sample showed the reversible RS characteristics by the formation and rupture of filaments. Finally, via the comparison of the RS characteristics according to the electrode area, it was confirmed that capacitance is an important factor for the formation and rupture of filaments.

본 연구에서는 멤리스터 소자의 높은 신뢰성을 확보하기 위해 소자 제작 단계에서 30 nm 두께의 ZrO2 금속산화물 박막 위 국부영역에 리튬 filament seed 층을 패턴하여 작은 이온반경의 리튬이온을 저항변화 주체로 활용하는 멤리스터 소자를 구현하였다. 패턴 된 리튬 filament seed 대비 다양한 상부전극의 면적을 적용하여 멤리스터-커패시턴스 병렬 구조의 이온형 저항변화 소자에서 커패시턴스가 filament type 저항변화 특성에 미치는 영향을 조사하고자 하였다. 이를 위해 ZrO2 박막 위에 5 nm 두께, 5 ㎛ × 5 ㎛ 면적의 리튬 filament seed 증착 후 50 ㎛, 100 ㎛ 직경의 상부전극을 증착, 리튬 메탈의 확산을 위한 250℃ 열처리 전 후 샘플에서 저항변화 특성을 확인하였다. 열확산에 의해 형성된 전도성 filament의 경우 전압에 의한 제어가 불가함을 확인하였으며, 전압에 의해 형성된 filament만이 electrochemical migration에 의한 가역적 저항변화 특성 구현이 가능한 것을 확인하였다. 전압에 의한 filament 형성 시 병렬로 존재하는 커패시턴스의 크기가 filament의 형성 및 소실에 중요한 인자임을 확인하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2019R1F1A1059637).

References

  1. J. Akerman, "Toward a Universal Memory", Science, 308 (5721), 508-510 (2005). https://doi.org/10.1126/science.1110549
  2. O. Auciello, J. F. Scott and R. Ramesh, "The Physics of Ferroelectric Memories", Phy. Today, 51(7), 22 (1998). https://doi.org/10.1063/1.882324
  3. S. Mathews, R. Ramesh, T. Venkatesan and J. Benedetto, "Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures", Science, 276(5310), 238 (1997). https://doi.org/10.1126/science.276.5310.238
  4. J. Lee, S. Choi, C. Lee, Y. Kang and D. Kim, "GeSbTe Deposition for the PRAM Application", Appl. Surf. Sci., 253(8), 3969 (2007). https://doi.org/10.1016/j.apsusc.2006.08.044
  5. Z. Li and S. Zhang, "Domain-wall Dynamics Driven by Adiabatic Spin-Transfer Torques", Phys. Rev. B, 70(2), 024417 (2004). https://doi.org/10.1103/physrevb.70.024417
  6. H.-S. Lee, "The Latest Trends and Issues of Anion-based Memristor", J. Microelectron. Packag. Soc., 26(1), 1-7 (2019). https://doi.org/10.6117/KMEPS.2019.26.1.001
  7. R. Waser, R. Dittmann, G. Staikov and K. Szot, "Redox-Based Resistive Switching Memories-nanoionic Mechanisms, Prospects, and Challenges", Adv. Mater., 21(25-26), 2632 (2009). https://doi.org/10.1002/adma.200900375
  8. A. Sawa, "Resistive Switching in Transition Metal Oxide", Mater. Today, 11(6), 28 (2008). https://doi.org/10.1016/S1369-7021(08)70119-6
  9. K. H. Son, K. M. Kang, H. H. Park and H. S. Lee, "Resistive Switching Characteristic of ZnO Memtransistor Device by a Proton Doping Effect", J. Microelectron. Packag. Soc., 27(1), 31-35 (2020).
  10. S. M. Kim and H. S. Lee, "Electric-field Assisted Photochemical Metal Organic Deposition for Forming-less Resistive Switching Device", J. Microelectron. Packag. Soc., 27(4), 77-81 (2020). https://doi.org/10.6117/KMEPS.2020.27.4.077
  11. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder and W. Lu, "Nanoscale Memristor Device as Synapse in Neuromorphic Systems", Nano Lett., 10(4), 1297-1301 (2010). https://doi.org/10.1021/nl904092h
  12. R. Schmitt, J. Spring, R. Korobko and Jennifer L. M. Rupp, "Design of oxygen Vacancy Configuration for Memristive Systems", ACS Nano, 11(9), 8881-8891 (2017). https://doi.org/10.1021/acsnano.7b03116
  13. T. S. Lee, N. J. Lee, H. Abbas, H. H. Lee, T. S. Yoon and C. J. Kang, "Compliance Current-controlled Conducting Filament Formation in Tantalum Oxide-based RRAM Devices with Different Top Electrodes", ACS Appl. Electron. Mater, 2(4), 1154-1161 (2020). https://doi.org/10.1021/acsaelm.0c00128
  14. S. Pi, C. Li, H. Jiang, W. Xia, H. Xin, J. J. Yang and Q. Xia, "Memristor Crossbar Arrays with 6-nm Half-Pitch and 2-nm Critical Dimension", Nat. Nanotechnol., 14, 35-39 (2018). https://doi.org/10.1038/s41565-018-0302-0
  15. L. Zhao, H. Y. Chen, S. C. Wu, Z. Jiang, S. Yu, T. H. Hou, H. S. Philip Wong and Y. Nishi, "Multi-level Control of Conductive Nano-filament Evolution in HfO2 ReRAM by Pulsetrain Operations", Nanoscale, 6(11), 5698-5702 (2014). https://doi.org/10.1039/c4nr00500g
  16. S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P. Y. Chen, H. Yeon, S. Yu and J. Kim, "SiGe Epitaxial Memory for Neuromorphic Computing with Reproducible High Performance Based on Engineered Dislocations", Nat. Mater., 17(4), 335-340 (2018) https://doi.org/10.1038/s41563-017-0001-5
  17. L. Ramirez, M. L. Mecartney and S.P. Krumdieck, "Nanocrystalline ZrO2 thin Film on Silicon Fabricated by Pulsedpressure Metalorganic Chemical Vapor Deposition (PPMOCVD)", J. Mater. Res., 23(8), 2202-2211 (2008). https://doi.org/10.1557/jmr.2008.0267
  18. T. Sato and M. Shimada, "Control of the Tetragonal-to-monoclinic Phase Transformation of Yttria Partially Stabilized Zirconia in Hot Water", J. Mater. Sci., 20(11), 3988-3992 (1985). https://doi.org/10.1007/BF00552389
  19. T. Sato and M. Shimada, "Crystalline Phase Change in Yttria-Partially-Stabilized Zirconia by Low-Temperature Annealing", J. Am. Ceram. Soc., 67(10), 212-213 (1984).
  20. D. Majumdar and D. Chatterjee, "X-ray Photoelectron Spectroscopic Studies on Yttria, Zirconia, and Yttria-stabilized Zirconia", J. Appl. Phys., 70(2), 988-992 (1991). https://doi.org/10.1063/1.349611