• 제목/요약/키워드: Positive solutions

Search Result 747, Processing Time 0.031 seconds

TWIN POSITIVE SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS FOR THE ONE-DIMENSIONAL ρ-LAPLACIAN

  • Bai, Chuan-Zhi;Fang, Jin-Xuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.195-205
    • /
    • 2003
  • For the boundary value problem (BVP) of second order functional differential equations for the one-dimensional $\rho$-Laplaclan: ($\Phi$$_{\rho}$(y'))'(t)+m(t)f(t, $y^{t}$ )=0 for t$\in$[0,1], y(t)=η(t) for t$\in$[-$\sigma$,0], y'(t)=ξ(t) for t$\in$[1,d], suitable conditions are imposed on f(t, $y^{t}$ ) which yield the existence of at least two positive solutions. Our result generalizes the main result of Avery, Chyan and Henderson.

The Dynamics of Solutions to the Equation $x_{n+1}=\frac{p+x_{n-k}}{q+x_n}+\frac{x_{n-k}}{x_n}$

  • Xu, Xiaona;Li, Yongjin
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.153-164
    • /
    • 2010
  • We study the global asymptotic stability, the character of the semicycles, the periodic nature and oscillation of the positive solutions of the difference equation $x_{n+1}=\frac{p+x_{n-k}}{q+x_n}+\frac{x_{n-k}}{x_n}$, n=0, 1, 2, ${\cdots}$. where p, q ${\in}$ (0, ${\infty}$), q ${\neq}$ 2, k ${\in}$ {1, 2, ${\cdots}$} and the initial values $x_{-k}$, ${\cdots}$, $x_0$ are arbitrary positive real numbers.

ON THE RATIONAL RECURSIVE SEQUENCE $x_{n+1}=\frac{{\alpha}x_n+{\beta}x_{n-1}+{\gamma}x_{n-2}+{\delta}x_{n-3}}{Ax_n+Bx_{n-1}+Cx_{n-2}+Dx_{n-3}}$

  • Zayed E.M.E.;El-Moneam M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.247-262
    • /
    • 2006
  • The main objective of this paper is to study the boundedness character, the periodic character and the global stability of the positive solutions of the following difference equation $x_{n+1}=\frac{{\alpha}x_n+{\beta}x_{n-1}+{\gamma}x_{n-2}+{\delta}x_{n-3}}{Ax_n+Bx_{n-1}+Cx_{n-2}+Dx{n-3}}$, n=0, 1, 1, ... where the coefficients A, B, C, D, ${\alpha},\;{\beta},\;{\gamma},\;{\delta}$ and the initial conditions x-3, x-2, x-1, x0 are arbitrary positive real numbers.

EXISTENCE OF BOUNDARY BLOW-UP SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS

  • Wu, Mingzhu;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1119-1132
    • /
    • 2009
  • In this paper, we consider the quasilinear elliptic system $\\div(|{\nabla}u|^{p-2}{\nabla}u)=u(a_1u^{m1}+b_1(x)u^m+{\delta}_1v^n),\;\\div(|{\nabla}_v|^{q-2}{\nabla}v)=v(a_2v^{r1}+b_2(x)v^r+{\delta}_2u^s)$, in $\Omega$ where m > $m_1$ > p-2, r > $r_1$ > q-, p, q $\geq$ 2, and ${\Omega}{\subset}R^N$ is a smooth bounded domain. By constructing certain super and subsolutions, we show the existence of positive blow-up solutions and give a global estimate.

  • PDF

ON THE RATIONAL(${\kappa}+1,\;{\kappa}+1$)-TYPE DIFFERENCE EQUATION

  • Stevic, Stevo
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.295-303
    • /
    • 2007
  • In this paper we investigate the boundedness character of the positive solutions of the rational difference equation of the form $$x_{n+1}=\frac{a_0+{{\sum}^k_{j=1}}a_jx_{n-j+1}}{b_0+{{\sum}^k_{j=1}}b_jx_{n-j+1}},\;\;n=0,\;1,...$$ where $k{\in}N,\;and\;a_j,b_j,\;j=0,\;1,...,\;k $, are nonnegative numbers such that $b_0+{{\sum}^k_{j=1}}b_jx_{n-j+1}>0$ for every $n{\in}N{\cup}\{0\}$. In passing we confirm several conjectures recently posed in the paper: E. Camouzis, G. Ladas and E. P. Quinn, On third order rational difference equations(part 6), J. Differ. Equations Appl. 11(8)(2005), 759-777.

The Relations of Peer Competence to Children’s Interpersonal Problem Solving Skills an mothers’ Parenting Behavior (아동의 또래유능성과 대인간 문제해결 능력 및 어머니 양육행동과의 관계)

  • 손승희;이은해
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.4
    • /
    • pp.167-177
    • /
    • 2004
  • The purpose of this study was to examine the relations of peer competence to children's interpersonal problem solving skills and mothers' parenting behavior. The subjects were 88, 6-year-old children and their mothers. Instruments used included the Peer Competence Scale, PIPS, and the revised version of IPBI. The data were analyzed with Pearson correlations, partial correlations, and stepwise regression. Children's sociability was explained mostly by mothers' intimacy-reasoning guidance, parental involvement, and children's positive alternative Solutions. Children's prosocial behavior was explained mostly by mothers' intimacy-reasoning guidance and children's positive alternative solutions. Children's leadership was explained most by mothers' involvement and Omit selling in parenting.

RADIAL SYMMETRY OF POSITIVE SOLUTIONS TO A CLASS OF FRACTIONAL LAPLACIAN WITH A SINGULAR NONLINEARITY

  • Cao, Linfen;Wang, Xiaoshan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1449-1460
    • /
    • 2021
  • In this paper, we consider the following nonlocal fractional Laplacian equation with a singular nonlinearity (-∆)su(x) = λuβ (x) + a0u (x), x ∈ ℝn, where 0 < s < 1, γ > 0, $1<{\beta}{\leq}\frac{n+2s}{n-2s}$, λ > 0 are constants and a0 ≥ 0. We use a direct method of moving planes which introduced by Chen-Li-Li to prove that positive solutions u(x) must be radially symmetric and monotone increasing about some point in ℝn.

NEHARI MANIFOLD AND MULTIPLICITY RESULTS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN

  • Ghanmi, Abdeljabbar;Zhang, Ziheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1297-1314
    • /
    • 2019
  • In this work, we investigate the following fractional boundary value problems $$\{_tD^{\alpha}_T({\mid}_0D^{\alpha}_t(u(t)){\mid}^{p-2}_0D^{\alpha}_tu(t))\\={\nabla}W(t,u(t))+{\lambda}g(t){\mid}u(t){\mid}^{q-2}u(t),\;t{\in}(0,T),\\u(0)=u(T)=0,$$ where ${\nabla}W(t,u)$ is the gradient of W(t, u) at u and $W{\in}C([0,T]{\times}{\mathbb{R}}^n,{\mathbb{R}})$ is homogeneous of degree r, ${\lambda}$ is a positive parameter, $g{\in}C([0,T])$, 1 < r < p < q and ${\frac{1}{p}}<{\alpha}<1$. Using the Fibering map and Nehari manifold, for some positive constant ${\lambda}_0$ such that $0<{\lambda}<{\lambda}_0$, we prove the existence of at least two non-trivial solutions

Harnack Estimate for Positive Solutions to a Nonlinear Equation Under Geometric Flow

  • Fasihi-Ramandi, Ghodratallah;Azami, Shahroud
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.631-644
    • /
    • 2021
  • In the present paper, we obtain gradient estimates for positive solutions to the following nonlinear parabolic equation under general geometric flow on complete noncompact manifolds $$\frac{{\partial}u}{{\partial}t}={\Delta}u+a(x,t)u^p+b(x,t)u^q$$ where, 0 < p, q < 1 are real constants and a(x, t) and b(x, t) are functions which are C2 in the x-variable and C1 in the t-variable. We shall get an interesting Harnack inequality as an application.

SOLVABILITY OF A THIRD ORDER NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATION

  • Liu, Zeqing;Wang, Wei;Park, Jong Seo;Kang, Shin Min
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.443-452
    • /
    • 2010
  • This work deals with the existence of uncountably many bounded positive solutions for the third order nonlinear neutral delay differential equation $$\frac{d^3}{dt^3}[x(t)+p(t)x(t-{\tau})]+f(t,x(t-{{\tau}_1}),{\ldots},x(t-{{\tau}_k}))=0,\;t{\geq}t_0$$ where ${\tau}>0$, ${\tau}_i{\in}{\mathbb{R}^+}$ for $i{\in}\{1,2,{\ldots},k\}$, $p{\in}C([t_0,+{\infty}),{\mathbb{R}^+})$ and $f{\in}C([t_0,+{\infty}){\times}{\mathbb{R}^k},{\mathbb{R}})$.