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Abstract. In the present paper, we obtain gradient estimates for positive solutions to
the following nonlinear parabolic equation under general geometric flow on complete non-
compact manifolds

∂u

∂t
= △u+ a(x, t)up + b(x, t)uq

where, 0 < p, q < 1 are real constants and a(x, t) and b(x, t) are functions which are C2 in

the x-variable and C1 in the t-variable. We shall get an interesting Harnack inequality as

an application.

1. Introduction and Main Results

Gradient estimates for nonlinear partial differential equations are of classical
interest, and have been extensively studied, leading to many important results,
especially in the area of geometric analysis. They were developed by Li and Yau
[6] as a method to study the heat equation. Hamilton applied this method to Ricci
flow on manifolds with scalar curvature [4]. Since then, there has been a lot of
work on gradient estimates for solutions of differential equations under geometric
flows, see, for instance [5, 7]. Extending some of this work, Sun [9] studied gradient
estimates for positive solutions of the heat equation under the geometric flow. Also,
the differential Harnack estimates plays an important role in solving the Poincaré
conjecture and the geometrization conjecture [8].

In the present paper, we study the following nonlinear parabolic equation under
general geometric flow on complete noncompact manifolds M ,

(1.1)
∂u

∂t
= △u+ a(x, t)up + b(x, t)uq

where, 0 < p, q < 1 are real constants and a(x, t) and b(x, t) are functions which are
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C2 in the x-variable and C1 in the t-variable. Before presenting our main results
about the equation, we motivate its consideration as a topic of study. If a(x, t) and
b(x, t) are identically zero, then (1.1) is the heat equation. In bio-mathematics, the
following equation

∂u

∂t
= △u+ a(x, t)up, p > 0,

could be used to model population dynamics. Similar equations arise in the study
of the conformal deformation of scalar curvature on a manifold (See [10], equation
(1.4)).

Let (M, g(t)) be a smooth 1-parameter family of complete Riemannian metrics
on a manifold M evolving by equation

(1.2)
∂gij
∂t

= 2sij

for t in some time interval [0, T ], where sij are componnents of a symmmetric
(0,2)-tensor s. Notice that

• if sij = −Rij then geometric flow (1.2) called Ricci flow,

• if sij = −1
2Rgij then geometric flow (1.2) called Yamabe flow,

• if sij = −(Rij + ρRgij) then geometric flow (1.2) called Ricci-Bourguignon
flow,

• if sij = −Rij + α∇ϕ ⊗∇ϕ where ∂ϕ
∂t = τgϕ then geometric flow (1.2) called

harmonic-Ricci flow.

Now we present our main results about the equation (1.1) as follows.

Theorem 1.1. Suppose (M, g(t)) is the family of complete Riemannian manifolds
evolving by (1.2). Let M be complete under the initial metric g(0). Given x0 ∈ M ,
and M1, R > 0, let u be a positive solution to the nonlinear equation (1.1) with
u ≥ M1 in the cube Q2R,T = {(x, t)|d(x, x0, t) ≤ 2R, 0 ≤ t ≤ T}. Suppose that there
exist constants K1,K2,K3,K4 ≥ 0 such that

Ric ≥ −K1g, −K2g ≤ s ≤ K3g, |∇s| ≤ K4

on Q2R,T . Moreover, assume that there exist positive constants θa, θb, γa, γb such
that △a ≤ θa, |∇a| ≤ γa, △b ≤ θb and |∇b| ≤ γb in Q2R,T . Then for any constant
0 < β < 1 and (x, t) ∈ Q2R,T if β < p, q < 1 we have

β
|∇u|2

u2
+ aup−1 + buq−1 − ut

u
≤ H1 +H2 +

n

β

1

t
,
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where,

H1 =
n

β

( (n− 1)(1 +
√
K1R)c21 + c2 + 2c21
R2

+
√
c3K2 + |a|(1− p)M

(p−1)
1

+ |b|(1− q)M
(q−1)
1 +

nc21
2R2(β − β2)

)
,

H2 =
[ n2

4β2(1− β)2
(
2(1− β)K3 + 2βK1 +

3

2
K4

)2
+

n

β
{M (p−1)

1 θa +M
(q−1)
1 θb + n

( 1
β
(K2 +K3)

2 +
3

2
K4

)
}

− n

β
{ [(p− β)M

(p−1)
1 γa + (q − β)M

(q−1)
1 γb]

2

|a|(p− β)(p− 1)M
(p−1)
1 + |b|(q − β)(q − 1)M

(q−1)
1

}
] 1

2

.

When R approaches infinity, we get the global Li-Yau type gradient estimates
(see [6]) for equation (1.1) as follows.

Corollary 1.2. Let (M, g(0)) be a complete noncompact Riemannian manifold

without boundary, and suppose that g(t) evolves by
∂gij
∂t

= 2sij for t ∈ [0, T ] and

satisfies

Ric ≥ −K1g, −K2g ≤ s ≤ K3g, |∇s| ≤ K4.

Also, assume that △a ≤ θa, △b ≤ θb, |∇a| ≤ γa and |∇b| ≤ γb in M × [0, T ) for
some constants θa, θb, γa and γb. Let u be a positive solution of (1.1) with u ≥ M1.
Then for any constant 0 < β < 1, if β < p, q < 1, we have

β
|∇u|2

u2
+ aup−1 + buq−1 − ut

u
≤ H1 +H2 +

n

β

1

t
,

where

H1 =
n

β

(√
c3K2 + |a|(1− p)M

(p−1)
1 + |b|(1− q)M

(q−1)
1

)
.

As an application, we get the following Harnack inequality.

Corollary 1.3. Let (M, g(0)) be a complete noncompact Riemannian manifold

without boundary, and suppose that g(t) evolves by
∂gij
∂t

= 2sij for t ∈ [0, T ] and

satisfies

Ric ≥ −K1g, −K2g ≤ s ≤ K3g, |∇s| ≤ K4.
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Also, assume that △a ≤ θa, △b ≤ θb, |∇a| ≤ γa and |∇b| ≤ γb in M × [0, T )
for some constants θa, θb, γa and γb. Let u(x, t) be a positive solution of (1.1) in
M×[0, T ) with u ≥ M1 where, a and b are positive constants. Then for any constant
0 < β < 1, if β < p, q < 1, for any points (x1, t1) and (x2, t2) on M × [0, T ) with
0 < t1 < t2, we have the following Harnack inequality,

u(x1, t1) ≤ u(x2, t2)(
t2
t1
)

n
β eΨ(x1,x2,t1,t2)+(H1+H2)(t2−t1),

where Ψ(x1, x2, t1, t2) = infγ
∫ t2
t1

1

4β
|γ′|2dt, and H1 =

n

β

(√
c3K2+a(1−p)M

(p−1)
1 +

b(1− q)M
(q−1)
1

)
, and

H2 =
[ n2

4β2(1− β)2
(
2(1− β)K3 + 2βK1 +

3

2
K4

)2
+

n

β
{M (p−1)

1 θa +M
(q−1)
1 θb + n

( 1
β
(K2 +K3)

2 +
3

2
K4

)
}

− n

β
{ [(p− β)M

(p−1)
1 γa + (q − β)M

(q−1)
1 γb]

2

a(p− β)(p− 1)M
(p−1)
1 + b(q − β)(q − 1)M

(q−1)
1

}
] 1

2

.

2. Methods and Proofs

Let u be a positive solution to (1.1). Let w = lnu, then a simple computation
shows that w satisfies the following equation

(2.1) wt = △w + |∇w|2 + ae(p−1)w + be(q−1)w.

We need the following lemmas of [3, 9] to prove our main theorem.

Lemma 2.1. If the metric evolves by (1.2) then for any smooth function w, we
have

∂

∂t
|∇w|2 = −2s(∇w,∇w) + 2∇w∇wt

and

∂

∂t
△w = △wt − 2s∇2w − 2∇w

(
divs− 1

2
∇(trgs)

)
,

where, divs denotes the divergence of s.

Lemma 2.2. Assume that (M, g(t)) satisfies the hypotheses of Proposition 1.1.
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Then for any constant 0 < β < 1 and (x, t) ∈ QR,T , if β < p, q < 1, we have

(△− ∂

∂t
)F ≥ −2∇w∇F + t

{β

n
(wt − |∇w|2 − ae(p−1)w − be(q−1)w)2

+ [a(p− β)(p− 1)e(p−1)w + b(q − β)(q − 1)e(q−1)w + 2(β − 1)K3

− 2βK1 −
3

2
K4]|∇w|2

+ 2(p− β)e(p−1)w∇w∇a+ 2(q − β)e(q−1)w∇w∇b

+ e(p−1)w△a+ e(q−1)w△b− n
( 1
β
(K2 +K3)

2 +
3

2
K4

)}
− a(p− 1)e(p−1)wF − b(q − 1)e(q−1)wF − F

t
,

where
F = t

(
β|∇w|2 + ae(p−1)w + be(q−1)w − wt

)
.

Proof. Define
F = t

(
β|∇w|2 + ae(p−1)w + be(q−1)w − wt

)
.

By the Bochner formula, we can write

△|∇w|2 ≥ 2|∇2w|2 + 2∇w∇(△w)− 2K1|∇w|2.

Note that

△wt =(△w)t + 2s∇2w + 2∇w
(
divs− 1

2
∇(trgs)

)
=wtt − (|∇w|2)t − ate

(p−1)w − ae(p−1)w − bte
(q−1)w − be(q−1)w

+ 2s∇2w + 2∇w
(
divs− 1

2
∇(trgs)

)
=2s(∇w,∇w)− 2∇w∇wt − ate

(p−1)w − ae(p−1)w

− bte
(q−1)w − be(q−1)w + wtt + 2s∇2w + 2∇w

(
divs− 1

2
∇(trgs)

)
,

and

△w = −|∇w|2 − ae(p−1)w − be(q−1)w + wt

= (
1

β
− 1)

(
ae(p−1)w + be(q−1)w − wt

)
− F

tβ

= (β − 1)|∇w|2 − F

t
.
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We can write,

△F = t
(
β△|∇w|2 +△(ae(p−1)w) +△(be(q−1)w)−△wt

)
.

According to the above computations, we obtain

β△|∇w|2 ≥2β|∇2w|2 + 2β∇w∇(△w)− 2βK1|∇w|2

=2β|∇2w|2 + 2β∇w∇
(
[(
1

β
− 1)

(
ae(p−1)w + be(q−1)w − wt

)
− F

tβ
]
)

−2βK1|∇w|2

=2β|∇2w|2 − 2

t
∇w∇F + 2(1− β)e(p−1)w∇w∇a

+ 2(1− β)e(q−1)w∇w∇b

+ 2a(1− β)(p− 1)e(p−1)w|∇w|2 + 2b(1− β)(q − 1)e(q−1)w|∇w|2

+ 2(1− β)∇w∇wt − 2K1β|∇w|2,

and, we know

△(ae(p−1)w) = e(p−1)w△a+ 2(p− 1)e(p−1)w∇w∇a+ a(p− 1)2e(p−1)w|∇w|2

+a(p− 1)e(p−1)w△w

= e(p−1)w△a+ 2(p− 1)e(p−1)w∇w∇a+ a(p− 1)2e(p−1)w|∇w|2

+a(p− 1)e(p−1)w[(β − 1)|∇w|2 − F

t
].

So we have

△F ≥ t
{
2β|∇2w|2 − 2

t
∇w∇F + 2(1− β)e(p−1)w∇w∇a+ 2(1− β)e(q−1)w∇w∇b

+2a(1− β)(p− 1)e(p−1)w|∇w|2 + 2b(1− β)(q − 1)e(q−1)w|∇w|2

+2(1− β)∇w∇wt − 2k1β|∇w|2 + e(p−1)w△a+ 2(p− 1)e(p−1)w∇w∇a

+a(p− 1)2e(p−1)w|∇w|2 + a(p− 1)e(p−1)w[(β − 1)|∇w|2 − F

t
]

+e(q−1)w△b+ 2(q − 1)e(q−1)w∇w∇b+ b(q − 1)2e(q−1)w|∇w|2

+b(q − 1)e(q−1)w[(β − 1)|∇w|2 − F

t
]−

[
wtt − (|∇w|2)t − ate

(p−1)w

−a(p− 1)e(p−1)wwt − bte
(q−1)w − b(q − 1)e(q−1)wwt + 2s∇2w

+2∇w(divs− 1

2
∇(trgs))

]}
,
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and

Ft =
F

t
+ t

{
2β(|∇w|2)t + ate

(p−1)w + a(p− 1)e(p−1)wwt + bte
(q−1)w

+ b(q − 1)e(q−1)wwt − wtt

}
=

F

t
+ t

{
2β∇w∇wt − 2βs(∇w,∇w)

+ ate
(p−1)w + a(p− 1)e(p−1)wwt + bte

(q−1)w

+b(q − 1)e(q−1)wwt − wtt

}
.

This equation implies that

(△− ∂

∂t
)F ≥ −2∇w∇F + t

{
2β|∇2w|2 + 2(β − 1)s(∇w,∇w)

+a(p− β)(p− 1)e(p−1)w|∇w|2 + b(q − β)(q − 1)e(q−1)w|∇w|2

+2(p− β)e(p−1)w∇w∇a+ 2(q − β)e(q−1)w∇w∇b

+e(p−1)w△a+ e(q−1)w△b

−2K1β|∇w|2 − 2s∇2w − 2∇w(divs− 1

2
∇(trgs))

}
−a(p− 1)e(p−1)wF

−b(q − 1)e(q−1)wF − F

t
.

By our assumptions, we have

−(K2 +K3)g ≤ s ≤ (K2 +K3)g

which implies that

|s|2 ≤ (K2 +K3)
2|g|2 = n(K2 +K3)

2.

Using Young’s inequality and applying those bounds yields

|s∇2w| ≤ β

2
|∇2w|2 + 1

2β
|s|2 ≤ β

2
|∇2w|2 + n

2β
(K2 +K3)

2.

On the other hand,

|divs− 1

2
∇(trgs)| = |gij∇isjl −

1

2
gij∇lsij | ≤

3

2
|g||∇s| ≤ 3

2

√
nK4.

Finally, with the help of the following inequality,

|∇2w|2 ≥ 1

n
(tr∇2w)2 =

1

n
(△w)2 =

1

n
(−|∇w|2 − ae(p−1)w − be(q−1)w + wt)

2.
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We obtain

(△− ∂

∂t
)F ≥ −2∇w∇F + t

{β

n
(wt − |∇w|2 − ae(p−1)w − be(q−1)w)2

+ a(p− β)(p− 1)e(p−1)w|∇w|2 + b(q − β)(q − 1)e(q−1)w|∇w|2

+ 2(p− β)e(p−1)w∇w∇a+ 2(q − β)e(q−1)w∇w∇b

+ e(p−1)w△a+ e(q−1)w△b+ 2(β − 1)K3|∇w|2

− 2βK1|∇w|2 − n

β
(K2 +K3)

2

− 3
√
nK4|∇w|

}
− a(p− 1)e(p−1)wF − b(q − 1)e(q−1)wF − F

t
.

Applying AM-GM inequality, we can write

3
√
nK4|∇w| ≤ 3K4(

n

2
+

|∇w|2

2
),

we get

(△− ∂

∂t
)F

≥ −2∇w∇F + t
{β

n
(wt − |∇w|2 − ae(p−1)w − be(q−1)w)2

+ [a(p− β)(p− 1)e(p−1)w + b(q − β)(q − 1)e(q−1)w + 2(β − 1)K3

− 2βK1 −
3

2
K4]|∇w|2 + 2(p− β)e(p−1)w∇w∇a+ 2(q − β)e(q−1)w∇w∇b

+ e(p−1)w△a+ e(q−1)w△b− n
( 1
β
(K2 +K3)

2 +
3

2
K4

)}
− a(p− 1)e(p−1)wF − b(q − 1)e(q−1)wF − F

t
.

This completes the proof. 2

Let’s take a cut-off function φ̃ defined on [0,∞) such that 0 ≤ φ̃(r) ≤ 1, φ̃(r) = 1
for r ∈ [0, 1] and, φ̃(r) = 0 for r ∈ [2,∞). Furthermore φ̃ satisfies the following
inequalities for some positive constants c1 and c2.

− φ̃′(r)

φ̃
1
2 (r)

≤ c1, φ̃′′(r) ≥ −c2.

Define r(x, t) := d(x, x0, t) and, set

φ(x, t) = φ̃(
r(x, t)

R
).

Using Corollary in page 53 of [2], we can assume φ(x, t) ∈ C2(M) with support in
Q2R,T . A direct calculation indicates that on Q2R,T , we have

(2.2)
|∇φ|2

φ
≤ c21

R2
.
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According to the Laplace comparison theorem in [1], we can write

(2.3) △φ ≥ − (n− 1)(1 +
√
K1R)c21 + c2

R2
.

For any 0 < T1 < T , suppose that φF attains it maximum value at the point (x0, t0)
in the cube Q2R,T1 . We can assume that this maximum value is positive (otherwise
the proof of our main theorem will be trivial). At the maximum point (x0, t0), we
have

∇(φF ) = 0, △(φF ) ≤ 0, (φF )t ≥ 0,

which follows that

0 ≥ (△− ∂

∂t
)(φF ) = (△φ)F − φtF + φ(△− ∂

∂t
)F + 2∇φ∇F.

So, we can write

(2.4) (△φ)F − φtF + φ(△− ∂

∂t
)F − 2Fφ−1|∇φ|2 ≤ 0.

Also, we know (see [9], p. 494) there exists a positive constant c3 such that

−φtF ≥ −
√
c3K2F.

The inequality (2.4) together with the inequalities (2.2) and (2.3) yield

(2.5) φ(△− ∂

∂t
)F ≤ HF,

where

H =
(n− 1)(1 +

√
K1R)c21 + c2 + 2c21
R2

+
√
c3K2.

Proof of Theorem 1.1. At the maximum point (x0, t0), by (2.5) and Lemma 2.2, we
have

0 ≥ φ(△− ∂

∂t
)F −HF ≥ −HF + φ{−2∇w∇F +

βt0
n

(wt − |∇w|2 − ae(p−1)w

− be(q−1)w)2 + t0[a(p− β)(p− 1)e(p−1)w + b(q − β)(q − 1)e(q−1)w + 2(β − 1)K3

− 2βK1 −
3

2
K4]|∇w|2 + 2t0(p− β)e(p−1)w∇w∇a+ 2t0(q − β)e(q−1)w∇w∇b

+ t0e
(p−1)w△a+ t0e

(q−1)w△b− nt0
( 1
β
(K2 +K3)

2 +
3

2
K4

)
− a(p− 1)e(p−1)wF − b(q − 1)e(q−1)wF − F

t0
}
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≥−HF + 2F∇w∇φ+
βt0
n

φ(wt − |∇w|2 − ae(p−1)w − be(q−1)w)2

+ t0φ[a(p− β)(p− 1)e(p−1)w + b(q − β)(q − 1)e(q−1)w + 2(β − 1)K3

− 2βK1 −
3

2
K4]|∇w|2 + 2t0φ(p− β)e(p−1)w∇w∇a+ 2t0φ(q − β)e(q−1)w∇w∇b

+ t0φe
(p−1)w△a+ t0φe

(q−1)w△b− nt0φ
( 1
β
(K2 +K3)

2 +
3

2
K4

)
− a(p− 1)e(p−1)wφF − b(q − 1)e(q−1)wφF − φt−1

0 F

≥−HF + 2F∇w∇φ+
βt0
n

φ(wt − |∇w|2 − ae(p−1)w − be(q−1)w)2

− t0φ[|a|(p− β)(p− 1)M
(p−1)
1 + |b|(q − β)(q − 1)M

(q−1)
1 + 2(1− β)K3

+ 2βK1 +
3

2
K4]|∇w|2 + 2t0φ(β − p)M

(p−1)
1 γa|∇w|+ 2t0φ(β − q)M

(q−1)
1 γb|∇w|

− t0φM
(p−1)
1 θa − t0φM

(q−1)
1 θb − nt0φ

( 1
β
(K2 +K3)

2 +
3

2
K4

)
+ |a|(p− 1)M

(p−1)
1 φF + |b|(q − 1)M

(q−1)
1 φF − φt−1

0 F

=−HF + 2F∇w∇φ+
βt0
n

φ(wt − |∇w|2 − ae(p−1)w − be(q−1)w)2

− t0φ[|a|(p− β)(p− 1)M
(p−1)
1 + |b|(q − β)(q − 1)M

(q−1)
1 ]|∇w|2

− t0φ[2(1− β)K3 + 2βK1 +
3

2
K4]|∇w|2 − t0φ[2(p− β)M

(p−1)
1 γa

+ 2(q − β)M
(q−1)
1 γb]|∇w|

− t0φ[M
(p−1)
1 θa +M

(q−1)
1 θb + n

( 1
β
(K2 +K3)

2 +
3

2
K4

)
]

+ |a|(p− 1)M
(p−1)
1 φF + |b|(q − 1)M

(q−1)
1 φF − φt−1

0 F.

For the sake of simplicity, set

C̃1 = 2(1− β)K3 + 2βK1 +
3

2
K4

C̃2 = M
(p−1)
1 θa +M

(q−1)
1 θb + n

( 1
β
(K2 +K3)

2 +
3

2
K4

)
and

C̃3 = − [(p− β)M
(p−1)
1 γa + (q − β)M

(q−1)
1 γb]

2

|a|(p− β)(p− 1)M
(p−1)
1 + |b|(q − β)(q − 1)M

(q−1)
1

.
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Using the inequality ax2 + bx ≤ − b2

4a
which holds for a < 0, we obtain

0 ≥−HF + 2F∇w∇φ+
βt0
n

φ(wt − |∇w|2 − ae(p−1)w − be(q−1)w)2

− t0φ[C̃3 + C̃2 + C̃1|∇w|2] + |a|(p− 1)M
(p−1)
1 φF

+ |b|(q − 1)M
(q−1)
1 φF − φt−1

0 F.

Noting the fact that 0 < φ < 1 and multiplying both sides of the above inequality
by t0φ, leads to

0 ≥−Ht0φF + 2t0φF∇w∇φ+
βt20
n

φ2(wt − |∇w|2 − ae(p−1)w − be(q−1)w)2

− C̃1t
2
0φ

2|∇w|2 − (C̃2 + C̃3)t
2
0φ

2

+ |a|(p− 1)M
(p−1)
1 t0φF + |b|(q − 1)M

(q−1)
1 t0φF − φF

≥−Ht0φF − 2c1
R

t0φF |∇w|φ 3
2 + |a|(p− 1)M

(p−1)
1 t0φF

+ |b|(q − 1)M
(q−1)
1 t0φF − φF

+
βt20
n

φ2[(wt − |∇w|2 − ae(p−1)w − be(q−1)w)2 − n

β
C̃1|∇w|2]− (C̃2 + C̃3)t

2
0φ

2,

where in the last inequality the following fact is applied

−2φ∇w∇F = 2F∇w∇φ ≥ −2F |∇w||∇φ| ≥ −2c1
R

φ
1
2F |∇w|.

Assume that

y = φ|∇w|2, z = φ(ae(p−1)w + be(q−1)w − wt).

So, we can write

0 ≥φF (−Ht0 + |a|(p− 1)M
(p−1)
1 t0 + |b|(q − 1)M

(q−1)
1 t0 − 1)− 2c1

R
t0F |∇w|φ 3

2

+
βt20
n

φ2[(wt − |∇w|2 − ae(p−1)w − be(q−1)w)2 − n

β
C̃1|∇w|2]− (C̃2 + C̃3)t

2
0φ

2

≥φF (−Ht0 + |a|(p− 1)M
(p−1)
1 t0 + |b|(q − 1)M

(q−1)
1 t0 − 1)

+
βt20
n

{(y − z)2 − n

β
C̃1y − 2nc1R

−1y
1
2 (y − 1

β
z)} − (C̃2 + C̃3)t

2
0.

For all a, b > 0 the inequality ax2− bx ≥ − b2

4a
holds for every real number x. Using
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this inequality, we obtain

βt20
n

{(y − z)2 − n

β
C̃1y − 2nc1R

−1y
1
2 (y − 1

β
z)}

=
βt20
n

{β2(y − z

β
)2 + (1− β2)y2 − n

β
C̃1y + [2(β − β2)y − 2

nc1
R

y
1
2 ](y − z

β
)}

≥βt20
n

{β2(y − z

β
)2 − n2C̃1

2

4β2(1− β)2
− n2c21

2R2(β − β2)
(y − z

β
)}

=
β

n
(φF )2 − nC̃1

2
t20

4β(1− β)2
− nc21t0

2R2(β − β2)
(φF ).

Hence,

β

n
(φF )2 +

[
−Ht0 + |a|(p− 1)M

(p−1)
1 t0

+ |b|(q − 1)M
(q−1)
1 t0 − 1− nc21t0

2R2(β − β2)

]
(ϕF )

− nC̃1

2
t20

4β(1− β)2
− (C̃2 + C̃3)t

2
0 ≤ 0.

As we know, the inequality Ax2 − 2Bx ≤ C, yields x ≤ 2B

A
+

√
C

A
. So, we get

φF ≤ n

β

(
Ht0 + |a|(1− p)M

(p−1)
1 t0 + |b|(1− q)M

(q−1)
1 t0 + 1 +

nc21t0
2R2(β − β2)

)
+
[n
β
(

nC̃1

2

4β(1− β)2
+ C̃2 + C̃3)

] 1
2

t0.

If d(x, x0, T1) ≤ 2R, we know that φ(x, T1) = 1. Then

F (x, T1) = T1(β|∇w|2 + ae(p−1)w + be(q−1)w − wt)

≤ φF (x0, t0)

≤ n

β

(
Ht0 + |a|(1− p)M

(p−1)
1 t0 + |b|(1− q)M

(q−1)
1 t0 + 1 +

nc21t0
2R2(β − β2)

)
+

[n
β
(

nC̃1

2

4β(1− β)2
+ C̃2 + C̃3)

] 1
2

t0.

Since T1 was supposed to be arbitrary, we can get the assertion. 2

Proof of Corollary 1.3. For any points (x1, t1) and (x2, t2) on M × [0, T ) with
0 < t1 < t2, we take a curve γ(t) parametrized with γ(t1) = x1 and γ(t2) = x2. In
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the ray of Corollary 1.2, one can get

log u(x2, t2)− log u(x1, y1)

=

∫ t2

t1

(
(log u)t + ⟨∇ log u, γ′⟩

)
dt

≥
∫ t2

t1

(
β|∇ log u|2 + aup−1 + buq−1 −H1 −H2 −

n

βt
− |∇ log u||γ′|

)
dt

≥−
∫ t2

t1

( 1

4β
|γ′|2 − aup−1 − buq−1 +H1 +H2 +

n

βt

)
dt

≥−
(
log(

t2
t1
)

n
β + (H1 +H2)(t2 − t1) +

∫ t2

t1

1

4β
|γ′|2dt

)
which means

log
u(x1, t1)

u(x2, t2)
≤ log(

t2
t1
)

n
β + (H1 +H2)(t2 − t1) +

∫ t2

t1

1

4β
|γ′|2dt.

Hence,

u(x1, t1) ≤ u(x2, t2)(
t2
t1
)

n
β eΨ(x1,x2,t1,t2)+(H1+H2)(t2−t1),

where Ψ(x1, x2, t1, t2) = infγ
∫ t2
t1

1

4β
|γ′|2dt, and H1 =

n

β

(√
c3K2+a(1−p)M

(p−1)
1 +

b(1− q)M
(q−1)
1

)
, and

H2 =
[ n2

4β2(1− β)2
(
2(1− β)K3 + 2βK1 +

3

2
K4

)2
+

n

β
{M (p−1)

1 θa +M
(q−1)
1 θb + n

( 1
β
(K2 +K3)

2 +
3

2
K4

)
}

− n

β
{ [(p− β)M

(p−1)
1 γa + (q − β)M

(q−1)
1 γb]

2

a(p− β)(p− 1)M
(p−1)
1 + b(q − β)(q − 1)M

(q−1)
1

}
] 1

2

.

2
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