DOI QR코드

DOI QR Code

Harnack Estimate for Positive Solutions to a Nonlinear Equation Under Geometric Flow

  • Fasihi-Ramandi, Ghodratallah (Department of Pure Mathematics, Faculty of Science Imam Khomeini International University) ;
  • Azami, Shahroud (Department of Pure Mathematics, Faculty of Science Imam Khomeini International University)
  • Received : 2019.08.28
  • Accepted : 2020.08.18
  • Published : 2021.09.30

Abstract

In the present paper, we obtain gradient estimates for positive solutions to the following nonlinear parabolic equation under general geometric flow on complete noncompact manifolds $$\frac{{\partial}u}{{\partial}t}={\Delta}u+a(x,t)u^p+b(x,t)u^q$$ where, 0 < p, q < 1 are real constants and a(x, t) and b(x, t) are functions which are C2 in the x-variable and C1 in the t-variable. We shall get an interesting Harnack inequality as an application.

Keywords

References

  1. T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampre equations, Springer, New York, 1982.
  2. E. Calabi, An extension of E. Hopf s maximum principle with an application to Riemannian geometry, Duke Math. J.,25(1)(1958), 45-56. https://doi.org/10.1215/S0012-7094-58-02505-5
  3. B. Chow and D. Knopf, The Ricci flow; An introduction, Mathematical survey and monographs, vol. 110, AMS, New York, 2004.
  4. R. S. Hamilton,The Harnack estimate for the Ricci flow, J. Differ. Geom., 37(1)(1993), 225-243. https://doi.org/10.4310/jdg/1214453430
  5. S. Kuang and Q. S. Zhang,A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal., 255(4)(2008), 1008-1023. https://doi.org/10.1016/j.jfa.2008.05.014
  6. P. Li and S. T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math., 156(3-4)(1986), 153-201. https://doi.org/10.1007/BF02399203
  7. S. P. Liu, Gradient estimates for solutions of the heat equation under Ricci flow, Pacific J. Math., 243(1)(2009), 165-180. https://doi.org/10.2140/pjm.2009.243.165
  8. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: math/0211159, 2002.
  9. J. Sun, Gradient estimates for positive solutions of the heat equation under geometric flow, Pacific J. Math., 253(2)(2011), 489-510. https://doi.org/10.2140/pjm.2011.253.489
  10. J. Y. Wu, Gradient estimates for a nonlinear parabolic equation and Liouville theorems, Manuscripta mathematica, 159(3-4)(2019),511-547. https://doi.org/10.1007/s00229-018-1073-5