• Title/Summary/Keyword: Position control accuracy

Search Result 664, Processing Time 0.03 seconds

Design of Improved Discrete Variable Controller for Induction motor Position control

  • Jeon, Hee-Jong;Jeong, Eull-Gi;Kim, Beung-Jin;Kim, Sang-Woo;Lim, Byung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.404-409
    • /
    • 1998
  • In this paper, the discrete variable structure controller (DVSC) is proposed for vector controlled induction motor position control. The variable structure control (VSC) which guarantees accuracy and robustness in nonlinear control system is developed in discrete time domain for applying to real servo system. Furthermore, the load torque observer is introduced to reduce chattering problem. The computer simulation results are presented to verify the proposed control scheme.

  • PDF

Precision Control of a Piezoelectric Actuator Based on an Inverse Hysteresis Model (역 히스테리시스 모델에 기초한 압전 구동기의 정밀제어)

  • Park, Seung-Man;Ahn, Hyun-Sik;Kim, Do-Hyun;Song, Joong-Ho;Choy, Ick;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2368-2370
    • /
    • 2000
  • In this paper, we proposed an inverse hysteresis model to cancel the nonlinear hysteresis phenomenon of a piezoelectric actuator and design a feedback control system based on the inverse hysteresis model. The piezoelectric actuator performs much better in open-loop response. However, the nonlinear hysteresis phenomenon should be linearized and the closed-loop control should be executed to get the required performance in the area, where high-speed and high-accuracy are required. Thus, it is shown by simulation that a good position tracking performance can be obtained for the repetitive desired position trajectory.

  • PDF

Control software development for direct drive arm robot using 32bit(MC68020) CPU with WHILE language (WHILE 언어를 사용한 32비트(MC 68020) CPU제어기에 대한 직접구동방식 로보트의 제어소프트웨어 개발)

  • 이주장;신은주;곽윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.239-243
    • /
    • 1989
  • This paper represents the control software development for Direct Drive Arm Robot with the WHILE language composed the 68000 assembly language and high level language modula-2. Direct Drive Ann Robot needs the control program which is fast step and exactly position moving because Direct Drive Arm Robt depends on accuracy. We found that the self-tuning algorithm for this robot control is very good for the real time control and the floating point operation using the 32 bit CPU(MC 68020) controller.

  • PDF

Friction Compensation For High Precision Control of Servo Systems Using Adaptive Neural Network

  • Chung, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.179-179
    • /
    • 2000
  • An adaptive neural network compensator for stick-slip friction phenomena in servo systems is proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensator plays a role of canceling the effect of nonlinear slipping friction force. This enables the mechatronic systems more precise control and realistic design in the digital computer. It was confirmed that the control accuracy is more improved near zero velocity and the points of changing the moving direction through numerical simulation

  • PDF

Admittance Model-Based Nanodynamic Control of Diamond Turnning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 극초정밀 제어)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.49-52
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining processprohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normalto the face of the workpice can be filterd through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment cotnrol action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. Based on the empirical data of the cutting dynamics, simulation results are shown.

  • PDF

Servo Drives State of the Art in Industrial Applications - A Survey

  • Kennel, R.;Kobs, G.;Weber, R.
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • Servo drives with microcomputer control provide the possibility of using modern and sophisticated control algorithms. As an additional feature it is possible to implement parallel and/or redundant software and hardware structures to realise safe motion or similar security functions. Unfortunately microcomputer control also has some impact on the behaviour of servo drives. Control algorithm, cycle time, sensors and interface have to be perfectly synchronised. Special control schemes are necessary on the line side (power supply) to meet the actual requirements concerning EMC. This contribution presents experiences and results obtained from a modern digital drive system pointing out the influences of low and high accuracy position sensors and the interdependencies mentioned above.

Impedance-Control Based Peg-in-Hole Assembly with a 6 DOF Manipulator (6축 머니퓰레이터를 이용한 임피던스 제어 기반의 원형 펙 조립)

  • Kim, Byeong-Sang;Kim, Young-Loul;Song, Jae-Bok;Son, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.347-352
    • /
    • 2011
  • The maximum accuracy of position control by using an industrial robot is about $100{\mu}m$, whereas the maximum tolerated imprecision in the position of precision parts is about several tens of micrometers. Therefore, it is very difficult to assemble parts by position control only. Moreover, in the case of precision assembly, jamming or wedging can easily occur because of small position/orientation errors, which may damage the parts to be assembled. To overcome these problems, we investigated a force control scheme that provides proper motion in response to the contact force. In this study, we constructed a force control system that can be easily implemented in a position-controlled manipulator. Impedance control by using an admittance filter was adopted to perform stable contact tasks. It is shown that the precision parts can be assembled well by adopting impedance control and blind search methods.

Expert-Novice Differences in Reading and Predicting Visual Information in Air Traffic Control (항공관제 전문성 수준에 따른 시각정보 판독과 미래정보 예측 차이)

  • Kwon, Hyuk-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.18-27
    • /
    • 2015
  • Many studies have shown that having perception of spatial information is important for air traffic control officer (ATCO) since it helps them understand the current situation and predict the situation it leads to. However, little or no research has been done to investigate if there is any difference at the levels of expertise in perceiving spatial information and predicting a prospective situation. This study investigates the difference between expert and novice ATCO groups in how accurately each group of ATCO perceive spatial information such as position, altitude, speed, and flying direction, and predicting such information they will encounter shortly. In completing a task to watch the movement of airplanes displayed on the computer monitor as a blip, the participants were asked to predict the position, speed, and the altitude of the aircraft in a minute by marking on the sector map. The results show that the expert group performed better in accuracy and had tendency to overestimate on position and altitude; however, no significant difference was found between the two groups in terms of reading a flying direction. Therefore reading a flying direction may not be a reliable indicator to judge expertise of ATCO. But the expert group shows better predicting performance by perceiving spatial information such as airplane's position and altitude with feeling on time. The study suggests that it is important to enhance perceptive skills in ATCO training in improving their expertise in predicting accuracy traffic situation, preventing from air collision, and improving productivity for more efficient air traffic flow. A further study on the relationship between the perception of spatial information and the sense of time in predicting future information and effectiveness as an independent factor would contribute to providing more insights into expertise of ATCOs.

Piston control of hydraulic cylinder using an learing strategy (유압실린더의 학습에 의한 위치제어)

  • 박성환;권기수;허준영;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1122-1126
    • /
    • 1991
  • As microcomputers have become widespread and the high speed solenoid valves have been developed, digitally controlled hydraulic systems are used in many applications. This study deals with position control of hydraulic cylinder operated by two port 3-way high speed solenoid valve using a self-learning strategy. This was done by developing a control algorithm for the microcomputer which always automatically adjust the length of control pulse to the optimum value in accordance with the error regardless of changes in the operating condition and physical differences between components. Tests carried out in the laboratory indicate that a positional accuracy could be improved.

  • PDF

A Study on Sliding Mode Control of EHA System for Robust Control (견실한 추종 제어를 위한 EHA 시스템의 슬라이딩 모드제어에 관한 연구)

  • Park, Yong-Ho;Park, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2009
  • The response characteristics of EHA systems are sensitive to the temperature change of working fluid because the temperature of working fluid causes the variation of system parameters such as effective bulk modulus and viscous friction coefficient. In this paper, a precise position control of EHA system using the adaptive sliding mode control system is suggested. The adapted system parameters such as effective bulk modulus and viscous friction coefficient can be used for monitoring failures in the EHA system which has potential applications in the industrial fields. Not only the accuracy of adapted system parameters but also the improved performance and robustness in a given reference position of the cylinder are verified by computer simulation using AMESim software.