• 제목/요약/키워드: Poset

검색결과 52건 처리시간 0.019초

TOPOLOGICAL PROPERTIES OF GRAPHICAL ARRANGEMENTS

  • Nguyen, Thi A.;Kim, Sangwook
    • 호남수학학술지
    • /
    • 제36권2호
    • /
    • pp.435-454
    • /
    • 2014
  • We show that for any graph G, the proper part of the intersection poset of the corresponding graphical arrangement $\mathcal{A}_G$ has the homotopy type of a wedge of spheres. Furthermore, we also indicate the number of spheres in the wedge, based on the number of spanning forests of G and other graphs that are obtained from G.

COMBINATORIAL ENUMERATION OF THE REGIONS OF SOME LINEAR ARRANGEMENTS

  • Seo, Seunghyun
    • 대한수학회보
    • /
    • 제53권5호
    • /
    • pp.1281-1289
    • /
    • 2016
  • Richard Stanley suggested the problem of finding combinatorial proofs of formulas for counting regions of certain hyperplane arrangements defined by hyperplanes of the form $x_i=0$, $x_i=x_j$, and $x_i=2x_j$ that were found using the finite field method. We give such proofs, using embroidered permutations and linear extensions of posets.

Posets Related to Some Association Schemes

  • Song, Sung-Yell
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제25권3호
    • /
    • pp.57-69
    • /
    • 1987
  • A geometric interpretation of t-designs, in the context of posets, is given in the association scheme, not isomorphic with the Hamming scheme H(2,4), but having the same parameters as H(2,4). It is also shown that there is no similar poset which characterizes the designs for ally of the three exceptional association schemes, not isomorphic with the Johnson scheme J(8,2), but having the same parameters as J(8,2).

  • PDF

Eventually Regular Regressive Generalized Transformation Semigroups

  • Wasanawichit, Amorn;Phongpattanacharoen, Teeraphong;Kemprasit, Yupaporn
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.511-518
    • /
    • 2005
  • Necessary and sufficient conditions have been provided for some standard regressive transformation semigroups on a poset to be eventually regular. Our main purpose is to generalize this result by characterizing when their generalized semigroups are eventually regular.

  • PDF

AN ALTERNATIVE PROOF FOR THE MINIMALITY OF STRONGLY QUASI-POSITIVE FIBERED KNOTS IN THE RIBBON CONCORDANCE POSET

  • Keiji Tagami
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.779-784
    • /
    • 2024
  • Baker proved that any strongly quasi-positive fibered knot is minimal with respect to the ribbon concordance among fibered knots in the three-sphere. By applying Rapaport's conjecture, which has been solved by Kochloukova, we can check that any strongly quasi-positive fibered knot is minimal with respect to the ribbon concordance among all knots in the three-sphere. In this short note, we give an alternative proof for the fact by utilizing the knot Floer homology.

Logic of Quantum Mechanics for Information Technology Field

  • Yon, Yong-Ho
    • International Journal of Contents
    • /
    • 제7권4호
    • /
    • pp.56-63
    • /
    • 2011
  • Quantum mechanics is a branch of physics for a mathematical description of the particle wave, and it is applied to information technology such as quantum computer, quantum information, quantum network and quantum cryptography, etc. In 1936, Garrett Birkhoff and John von Neumann introduced the logic of quantum mechanics (quantum logic) in order to investigate projections on a Hilbert space. As another type of quantum logic, orthomodular implication algebra was introduced by Chajda et al. This algebra has the logical implication as a binary operation. In pure mathematics, there are many algebras such as Hilbert algebras, implicative models, implication algebras and dual BCK-algebras (DBCK-algebras), which have the logical implication as a binary operation. In this paper, we introduce the definitions and some properties of those algebras and clarify the relations between those algebras. Also, we define the implicative poset which is a generalization of orthomodular implication algebras and DBCK-algebras, and research properties of this algebraic structure.

ORDER RELATED CONCEPTS FOR ARBITRARY GROUPOIDS

  • Kim, Hee Sik;Neggers, Joseph;So, Keum Sook
    • 대한수학회보
    • /
    • 제54권4호
    • /
    • pp.1373-1386
    • /
    • 2017
  • In this paper, we introduce and explore suggested notions of 'above', 'below' and 'between' in general groupoids, Bin(X), as well as in more detail in several well-known classes of groupoids, including groups, semigroups, selective groupoids (digraphs), d/BCK-algebras, linear groupoids over fields and special cases, in order to illustrate the usefulness of these ideas. Additionally, for groupoid-classes (e.g., BCK-algebras) where these notions have already been accepted in a standard form, we look at connections between the several definitions which result from our introduction of these ideas as presented in this paper.

THE MULTILEVEL SECURITY PROBLEM OVER CLASS SEMIGROUPS OF IMAGINARY QUADRATIC NON-MAXIMAL ORDERS

  • KIM, YONGTAE
    • 호남수학학술지
    • /
    • 제28권2호
    • /
    • pp.185-196
    • /
    • 2006
  • A scheme based on the cryptography for enforcing multilevel security in a system where hierarchy is represented by a partially ordered set was first introduced by Akl et al. But the key generation algorithm of Akl et al. is infeasible when there is a large number of users. In 1985, MacKinnon et al. proposed a paper containing a condition which prevents cooperative attacks and optimizes the assignment in order to overcome this shortage. In 2005, Kim et al. proposed key management systems for multilevel security using one-way hash function, RSA algorithm, Poset dimension and Clifford semigroup in the context of modern cryptography. In particular, the key management system using Clifford semigroup of imaginary quadratic non-maximal orders is based on the fact that the computation of a key ideal $K_0$ from an ideal $EK_0$ seems to be difficult unless E is equivalent to O. We, in this paper, show that computing preimages under the bonding homomorphism is not difficult, and that the multilevel cryptosystem based on the Clifford semigroup is insecure and improper to the key management system.

  • PDF

GEOMETRIC REPRESENTATIONS OF FINITE GROUPS ON REAL TORIC SPACES

  • Cho, Soojin;Choi, Suyoung;Kaji, Shizuo
    • 대한수학회지
    • /
    • 제56권5호
    • /
    • pp.1265-1283
    • /
    • 2019
  • We develop a framework to construct geometric representations of finite groups G through the correspondence between real toric spaces $X^{\mathbb{R}}$ and simplicial complexes with characteristic matrices. We give a combinatorial description of the G-module structure of the homology of $X^{\mathbb{R}}$. As applications, we make explicit computations of the Weyl group representations on the homology of real toric varieties associated to the Weyl chambers of type A and B, which show an interesting connection to the topology of posets. We also realize a certain kind of Foulkes representation geometrically as the homology of real toric varieties.