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Abstract

A geometric interpretation of t-designs, in the context of posets, is given in the associatisn
cheme, not isomorphic with the Hamming scheme &(2,4), but having the same parameters as
9(2,4). It is also shown that there is no similar poset which characterizes the designs for any

f the three exceptional association schemes, not isomorphic with the Johnson scheme J(8,2), but
laving the same parameters as J(8,2).

1. Imtroduction

In a symmetric association scheme, an algebraic definition of f-design has been introduced Ly
Jelsarte [6]. It is known that the combinatorial meaning of z-designs in H(m,¢) coincides with the
oncept of the orthogonal array of strength ¢ with n-rows over F. In the case of J(v, k), ¢-designs
re nothing but the classical ordinary ¢-(v, %, 1) designs [6]. Geometric interpretations of ¢-designs
ave been discussed by several authors such as Delsarte [7]. Stanton [13], Bannaiand Ito [2], Mun-
masa [10], etc. In particular, for most of the known (P and @)-polynomial association schemes it
i known that there is a natural geometric interpretation of ¢-designs in the context of posets(semi-
ittices), and hence there is a geometric definition of ¢-designs which coincides with the algebraic
ne [2],

In this paper we want to find the most natural poset, which characterizes ¢-designs in the excep-
onal cases of Hamming and Johnson schemes. In Section 3 we give a regular poset which char-
sterizes #-designs in the Shrikhande graph G, the exceptional case of Hamming scheme H(2,4),
ad show that the poset is unique under a certain regularity condition. In Section 4 we show that
tere is no such regular poset which characterizes the designs in any of the exceptional cases of
hnson scheme J(8,2). Before we discuss our results, in Section 2 we define our terms and give

yme background information to make this work self-contained. We refer to Bannai and Ito [1,27,
* Delsarte [6] for further details.

2. Definitions and Preliminaries
We use [d] for the set {0,1,--,d}, I for the unit matrix, and J for the all-one matrix.
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Definition 2. 1. A symmetric association scheme of class d, for short a scheme, is a configura-
tion = (X, {R}:c.;) consisting of a finite set X and symmetric relations Ry, R,, ---, R; on X where
1. Ry={(x,z) : z=X]} is the identity relation,
2. {R:}icey is a partition of XX X,
3. For any k, i, j<[d] and any z, y=X with (z,y)ER,, the number z&X where
(z,2) ER; and (z,¥) SR, depends only on h, ¢, and j. This number is denoted by p:*;.
We call pi; the intersection numbers (parameters) and R; the {-th associate class of #. Let the
adjacency matrices I=A4A,, 4,, -, A, of ¥ have rows and columns labelled by X, and for each i the
(z,y)-entry of the i-th adjacency matrix (A;).,=1 or 0 according as = and y are i-th associate
or not. By 3 of Definition 2.1 these (0, 1)-matrices satisfy
A;A,::'.GZMSP.-";A;. @ jeldl),
so they span an algebra (semi-simple algebra) (%) over R, called the adjacency algebra or Bose
Mesner algebra. Let Eo, E,, -, E; be the primitive idempotents of & (%), ordered so E,=|X|-\J
Let P and @ be the degree d--1 matrices whose (i, j)-th entries p;({) and ¢;(¢) are defined by
Aj‘—‘ie};;a;Pj(i) E;
and
E=|X|" i%}]%(i)A;
We call P and @ the first and second eigenmatrizx, respectively. Let the i-th intersection matri
B; of # be the matrix of degree d+1 where (j, h)-th entry is the parameter p%, We note that
B:B; ZE piB;,

and the algebra spanned by B,, B, ..., B, is isomorphic to the adjacency algebra of(#) by the co:
respondence of A; to B;. In particular, B; and A; have the same minimal polynomial.

A graph G is a pair (V,E) consisting of a set V of v vertices and a set E of unordered pai

of vertices, called edges. The adjacency matriz of a graph G is the symmetric matrix A wha
rows and columns are labelled by the vertices, and whose (x, v)-entry is 1 if {«, v} is an edge, ar
0 otherwise. The distance d(u,v) between u« and v is the length of the shortest path joining # a
v. The diameter d of G is the maximum distance of two vertices. For # and v in V, and f
d(u,v)=h, we let
P, v)={{wcV . du w)=i, d(v,w)=j}].

If p#;(u,v) is constant for all u, v with d(u, v)=h, then we write it as p*;. We call G=(V, E)
distance regular graph if {p;}.,;, » are constants. With a distance regular graph of diameter .
we associate the association scheme(V, {R}ic;) where (x,v)&R; if and only if d(x, v)=1.

In this discussion we are going to deal with a special class of asscciation schemes, namel
(P and §)-polynomial association schemes.

A symmetric assaciation scheme #= (X, {R:}icws;) is called a P-polynomial association sche:
with respect to the ordering R,, R, ---, R, if there exist some complex coeficient polynomials v;(
of degree i, i=[d], such that A,=wv:(4,) with respect to the ordinary matrix multiplicatic

(Then the eigenmatrix P satisfies p;(j) =v:($,(j)) for the same polynomial v,(z), and vice vers:
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particular, the combinatorial concept of P-polynomial association schemes is equivalent to that
listance regular graphs. That is, a P-polynomial association scheme (X, {R.}icw,) is a symmet-
association scheme such that a pair (z,y) of element =z, y=X is in the relation R; if and

1 if d{x,y)=1i in the undirected graph (X, R,), with vertex and edge sets being X and R,
rectively.

et #= (X, {Ri}iars;) be a symmetric asscciation scheme and let E; (i=1,2, .-, d) be the primitive
ipotents of the adjacency algebra (&), ¥ is called a Q-polynomial asscciation scheme with
ect to the ordering E, E,, ---, E,, if there exist some complex coefficient polynomials v/*(z)
i that | X|E;=v*(|X|E,) and v*(zx) has degree 7/, where the multiplication of (%) is under
entrywise (Hadamard) product. Equivalently, the second eigenmatrix @ satisfies, for ,j<[d],
) =v*(q,(j)) for the same polynomials,

e will need two imgportant classes of (P and Q)-polynomial asscciaticn schemes, namely Ham-
r and Johnson schemes.

t F be a set of cardinality q(g>2) and X=F*, the n-th Cartesian power of F. The Hamming
mce between two points z=(z,, Zs, -, Z,) and y= (¥, s, -+, ¥=) of X is
d(z,y)={i . 2y, i=1,2,, 2}l
R; be the i-th distance relation on X, i.e,
R={(z,y)eXxX :d(z,y) =i}

#= (X, {Ri}icta;) is 2 symmetric ((P and @)-polynomial) association scheme and is called the
ming scheme I(n,q) of length n cver F. We call the associated distance regular graph
%) the Hamming graph of the scheme H(n,¢) and denote it also by H(z, g).

V be a set of cardinality v and X=%,(V), the family of all k-element subsets of
;%:;), We define the distance between x and v of X by
d(z,y) =k—|zNy|.
! be the i-th distance relation on X, i.e.,
R={(z,y) XXX : |zNy|=k—i}.
X=(X, {Ri}icu:) is a symmetric ((P and @)-polynomial) association scheme and called the

on scheme J(v,k). The graph (X, R,) is called the Johnson graph and also denoted by
).

we define the ¢-design in a @-polynomial association scheme #= (X, {Ri}icw;) of class d.
non-empty subset Y of X, the (d+1)-tuple a=(ao, ai, -, a;) is said to be the inner distri-
of Y with respect to {Ri}iqw if a; is given by

a=|Y {1 (YXY)NR:, for i=0,1,--,d.
the dual b= (b, by, b,) of g by b=|Y|~,aQ where @ is the second eigenmatrix of the
2. Obviously, ai=b,=1, b:=a.q.(0) +a1q;(1) +---+asgq:(d).

nition 2.2. A non-empty subset Y of X is called a ¢-design in a Q-polynomial association
2 = (X, {Ri}icu;) with respect to {E,, E,, -, E,} if b,=b,=+--=b,=0.

1e Johnson scheme J(v, k), a subset Y of X is a ¢-design if and only if Y forms an ordi-
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vary combinatorial £-(v, k, ) design in the v-clement set V, i.e., each f-clement subset of Vis con
tained in a constant number A of elements of Y. In the Hamming scheme H(n,q), ¥ is a ¢-desig
if and only if Y forms an orthogonal array of strength ¢ with # rows over F(see [6, p.43, 517)
Through out this paper, a ranked poset (P,<) (simply, poset P) is a finite graded poset [4
P=X,UX - -UX,, where rank (X;) =4, X;=1{0} is the unique minimal element of P, and X,=
is the set of maximal elements of P. It is known that most of the known (P and Q)-polynomi:
association schemes have certain posets which characterize their f-designs in the following sense: .
subset Y of X is a ¢-design in a @Q-polynomial association scheme #=(X, {R};ccey) if and only
L@ =|{y&Y . z<y}| is constant for all X, and all i=0,1,--,¢, in the poset P attached
#. For instance, we can attach certain posets to the Johnson and Hamming schemes as follows:
1. For J(v,d), let P=X,UX,U---UX,; be defined by X;=P.(V), the set of all i-eleme
subsets of V, and <y in P if and only if zCy in V.,
2. For H(d,q), let P=X,UX,U--UX, be defined by Xi=(feF : |J|=i, JZ[d]}, whe
F7 is the set of all functions from J to F, and f<g for f&F’, g=F* with J, KC[d]
and only if JCK and g{,=f,
Then these posets are ones which characterize t-designs for the Johnson and Hamming schemes
the abeve sense, The construction of right posets has been carried out in each individual class

association schemes by several authors (for instance, see [23,077,[103, [18D).

3. Posets Attached to Gy

By Egawa [9] it is known that the Hamming scheme

11 21 31 41 1
H{(n,q) is uniquely determined by the parameters if g7-4. /\ /\/’\ /\
1 14/ 24 H HN W /

However, if g=4 there are [-2—7{’ exceptional graphs of

{(n,4), not isomorphic with H(n,4), but having the 13 \
same parameters as Ff(n,4). Inparticular, if 2=2 then 12 L/ 2 / NM ;2\
there is one exceptional graph, the Shrikhande graph
G, which is depicted in Figure 1. The vertices labelled nl 2t 31 41 11\ /
with the same index are identified. The aim of this sec- Figure 1. Gy

tion is to find a natural poset which characterizes the
designs in G, We start with classifying all the designs in G,, We use the convention that .

the set of vertices of G,,.

Lemma 3.1. If Y isan 1~designin Gy, then the size of Y is an element of {4, 6, 8, 10, 12,
Proof. Let YC X be an 1-design of size y in Gy, and let a=(a,, a,,a,) and b= (b, b,, b,
the inner and dual distribution of Y. From the definition of t~design with ¢=1, with the se

1 6 8
QZ[I 2-3}

eigenmatrix

1 -2 1
we have a system of equations
ytd+a+ax) =1,
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¥y 1 {(6-+2a,—2a,) =0,
ler the condition that a;=y'y;({=1,2), where v,=|(¥xY) N R;| with y and y; integers.
ving the equations we have seven triples (y; a,,4;) as solutions, namely, (4; 0,3), (65 1,4),
12,5), (10; 3,6), (125 4,7), (14; 5,8), (16; 6,9). Among these the case (14; 5,8) can not
wr because y,>72 for any 14 vertex subset of X in G,. Hence the size of any I-design in Gy
ist be one of 4,6,8,16,12, or 16.

Tor our convenience, we denote the collection of all 1-designs of type (y; ay,@.) by F . where
\ index i—a,. We can easily find all 1-designs of each type. For instance and later use, by col-
ting all 4-vertex sukscts in which no two vertices are adjacent, we get all 1-designs of size 4.
fact |F ¢! =16 and the members of 3, are
{11, 22, 33,44}, {12,23,34,41}, {(13,24,31,42}, {14,21,3z2,43},
{11, 13,32, 34}, {21,23,42,44}, ({31,33,12,14}, {41,43,22,24},
{11,23,31,43}, (12,24,32,44), {13,21,33,41}, {14,22, 34,42},
{11,13,31,33}, {12,14,32,34), {21,23,41,43}, {22,24,42, 44}.
nilarly, by collecting all 6-vertex subsets in which each vertex has cnly one adjacent vertex,
can find all members of . Then ', for i=2, 3,4, can also be found by taking union of two
joint 1-designs of F (U5 ;. We also note that if ¥ is an 1-design of G, then the complement
Y in X is also 1-design cf G;. We summerize this in the following lemma.

emma 3.2, | Fol=IF. =16, 1F=1F:1=32, |F.]=18.

et P=X,JX,UX, ke a rank two pcset with X,=X, the vertex set of G,, and X,={0}, the
imal elerment. For each z&X, let B(2) = [s&X, : s<z} and B.=|B(z)|. Also for each s&X],
Cis)={z=X:z>s} and 7,:='C{s)|. Suppecse 3. (resp. 7,) does not depend on the choice of x
sp. 5) then we write the constant 8 (resp. 7). For YCX and s&X,, Ay(s) denotes the size of
[y€Y :y>s}. Suppese Ay(s) is constant for all s&X,, we write it as A, and we say that
- exists’. For a family 7 of subsets of X, let 1, exist for all Y%, and let 1y be the same
all Y&, then we denote this constant by A, and say that ‘A, exists’. For each z=X, let

x)={YeF . z&Y} and denote |F (z)| by ¢.. If ¢, is constant for all z=X with respect to
family %, then we denote this comstact by ¢,, and say that ‘@, exists’.

definition 3.3. P is said to be an ‘attachable’ poset to G, if P satisfies the following state-
nt: Y is a 1-design in G, if and omly if A, exists.

emma 3.4, Suppose there is a poset attachable to G, then
1. 7 exists,

2. AY:lZ if and Oﬂl_'y tf %},By:zzﬁn

3. If F is a family of subsets of X and A, and ¢, exist, then | F | A==70s.
Proof. Since X itself is a 2-design in G, so 1. is obvious. 2. and 3. are also immediate by
basic counting arguments.

-emark. From the preceding paragraph of Lemma 3.2 we can easily see that @, exists for each
‘he 1-design families in G,, In fact, ¢,,=4, @, =12, $5.=9, ¢,=20, and ¢, =12.
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Lemma 3.5 Let F: be the family of 1-designs in Gy as we defined. Suppose there is an
attachable poset P for which ,; exists for each i. Then 1=8 and 2,,=i+2 for i=0,1,2, 3,4.
Proof. By 3 of Lemma 3.4., r=|%:|4,,/¢,, where all variables are positive integers with
7<16. Therefore, from the above remark,
7=42,,=322,/12=225,=--.
implies y=8 and A,,=i+2.

The existence of such pcset is guaranteed by the following theorem.

Theorem 3.6. There exists a non-trivial poset P ( for which 2,,=2) attachable to G,,.
Proof. We construct a poset P=X{JX,UX, for which 2,,=2, then we show this poset is th
one which is attachable to G,. Suppose there is a poset P which satisfies A,=2 for all YeZF,
Then for each member s of X, and for every l-design Y&iF,, |C(s)NY}|=2, in particular
with Y={11,22,33,44}, |C{(s)N{11,22,33,44}|=2. Without loss of generality, we assume tha
C()N{11,22,33,44) ={11,22}. Then from the design (22,24,42,44} one of 24 and 42 (but nc
both) must belong to C(s) since lC(s) N{22,24,42,44} | =2. Suppose we assume the case ths
24=C(s), then it follows 21&<C(s) and 23=C(s) from the design {21, 23, 42, 44}. Moreover, 3
and 43 can not belong to C(s) from the design {11,23,31,43}, 13<C(s) frem {11,13,31,33}, an
12 and 14 belong to C(s) from {31,33,12,14}. After all, C(s)={11, 12,13, 14, 21, 22, 23, 24}. On th
other hand, suppose we assume 42&=C(s) instead of 24, then 14 and 34 can not belong to C(s) fro:
the design {14,22, 34,42}, and 12 and 32 belong to C(s) from (12,24, 32,44)}. Moreover, 31&C (s
from {12, 14, 31,33}, and thus, 13,23, and 43 can not belong to C(s) from the designs {13, 24, 31, 4¢
and {11,23,31,43). Hence this time we have C(s)={(11,12,21,22,31,32,41,42}. Similarly,
we start with C(s) N {11, 22,33, 44} = (11, 33), then C(s) is either {11,12,21,24, 33, 34, 42,43} «
{11, 14, 23, 24, 32, 33,41,42}. In this manner, we are able to find all possible candidates for tl
members of X,. Tn fact, there are 12 candidates(name them s,,s,, -, s;,). Their upger bounds ar
{11, 12,13,14, 21, 22,23, 24}, (31,32, 33, 34, 41, 42, 43, 44},
{21, 22,23, 24, 31, 32,33, 34}, {11,12,13, 14,41, 42, 43, 44},
{11,12, 21,24, 33, 34,42,43}, (13,14, 22,23, 31, 32, 41, 44},
(11, 14, 23, 24, 32, 33,41, 42}, {12,13,21, 22, 31, 34, 43, 44},
{13, 14, 23,24, 33,34,43,44}, {11,12,21, 22, 31, 32, 41, 42},
{12, 13, 22,23, 32, 33,42, 43), (11,14, 21,24, 31, 34, 41, 44}.

We notice that each of these is the set of vertices on a pair of adjacent parallel lines in G,, a

thesa are all such pairs of lines.

Now we claim that the rank 2 poset P whose X,=X, the vertex set of Gy, X,={si, ss, -, 512
and X,={0}, is the one attachable to G,. Suppose Y is a 1-design in G, of size 4, then Ay=
from the way we construct P. For any design Y of size 6, we can easily check tl
|YNC(s;)|=3 for each j=1,2,---,12. We can also easily see that As;=i+2 for {=2,3,4. [
the converse, we need to show that any subset Y for which Ay(s;) is constant for all j forms
1-design in G It is clear that there is no subset Y of X that satisfies | YNC(s;)|=1 for
J(j=1,2,---,12). Since [C(s;)|=8 for all j the non-existance of a subset Z with A,=7 follo
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rom the nonexistance of Y with A,=1. Suppose there is a subset ¥ with 1y,=8, then Y must
e X, which is the trivial design. Suppose Y is a subset with Ay=2, then Y must contain two
lements from each C(s;), in other words, two vertices from each pair of adjacent parallel lines
1 Gy They are precisely those in F. Similarly, we can see that any subset Y with Ay=3
elongs to #,. The remaining cases are automatic, and it compleies our proof.

Before we close this section, we note the following:

1. From the proof of the theorem, the assumption A, =2 implies r=8 and A, =i+2 for i=1,
2,3,4. In fact, assuming one of the constant A,,=i+2 we can get the same results,

2. This is the unique attachable poset with 7=8 and =6, (8 exists means ,, exists for each
i by Lemma 3.4.)

3. This poset has the following properties:

a, C(s;) forms an anti 1-design, i.e., in the dual distribution of C(s;), 5,=0 and 4,=0,
for all j.
b. |{s&€X, :s<z, s<y}|=4 or 2 according as (r,y)ER, or R,

4. There are another posets attachalle to G,, with =8, for instance we can have one by
deleting arbitrary one (or possibly a few) element from X, of P,

5. It is known that the Cartesian product of two Hamming graphs H(n,, q) and H(n,, q) is
H(n,+n,,q), and the product of r-copies of Gy, is also a distance regular graph having
the parameters of H(2r,4), but non-isomorphic with H(2r,4) [8,12]. It is easy to see that
the product of two posets of H(n;,q) and H(n, g) (with the usual product of posets) is
the same as the poset of H(n;+n, q) with the ones we illustrated in Section 2. However,
it is not known yet whether the r-th power of the poset for G, is the right poset of the
r-th power of G

4, The Exceptional Johnson Graphs

: is known that there are three non-isomorphic exceptional graphs which have the same para-
ers as J(8,2) by Chang [5], and those are the only exceptional cases of Johmson graphs by
williger [14]. We denote these three graphs by Ji, J,, and J; (their adjacency matrices are
n in Appendix). In this work we shall show that none of these has a regular attachable poset,
say that a poset is regular if Ay is constant for all design Y with the same size. As we have
: in Section 3, we start with classifying all 1-designs. Since the proof of the following lemma
ist analogue of that of Lemma 3.1, we shall omit the proof by simply giving the common
'section matrix B(B;) and the second eigenmatrix @;

010 i 7 20
B=1{12 6 4] Q=11 7/3 —10/3}
0 5 8, 1 —7/3  4/3),

mma 4. 1. Let Y be a 1-design of the graph J, J=J,, J,, Js, and let a=(a,, a,, a;) be the
" distribution of Y with respect to J, as usual. Then the type (|Y|; a,a;)) of Y must be
m—2,m+1) for some m, m=2,3,-,14.

: note that each J does not necessarily have every such type of designs. However, all three
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graphs, as well as J(8,2), have 1-designs of size 4.

Theorem 4.2. None of Jy, J., and J; has a nontrivial attachable regular poset.

Proof. Let J=J;, and X={1,2, ---, 28} be the vertex set of J. Let 7 be the family of 1-designs
of size 4 (for the list see Appendix). Suppose we assume that there is a regular poset P. Then
each element s&X,, |C(s)N Y| must be constant for all Y&F. We denote the constant by A&,
“then A would be either 1, or 2, or 3, or 4, Suppose A=4, then the poset is the trivial one. Suppose
A=1 and s=X,, then C(s)={xz=X : £>s} contains exactly one element from each Y&7. Without
loss of generality, let the vertex 1 belong to C(s). Then C(s) must be contained in the set {1,2,
.+, 13} (={z€X :d(z,1)<1)) because the complement of the set is contained in the union of all
1-designs consisting the vertex 1. Obviously, C(s) can not be {1} because there are designs which
do not consist 1, so we assume a=C(s) for some a={2,3,---,13}. Then C(s) must be contained
in {z=X:d(z,1)<1, d(z,a)<1} from the our assumption A=1, and thus, |C(s)|<8 (#,',=6).
Now it is easy to see that there is at least one design Y& which does not intersect with C(s).
We conclude that A can not be 1, and it is also obvious that A can not be 3. Suppose now A=2,
then, in particular, for the design {1,14, 25,28}, [C(s)N{l,14,25,28}|=2. This is true for anm
s=X,. Suppose there is an s&X, such that C(s) N (1, 14, 25,28} ={1,14}. (We show that X, has i:
fact no such s5.) Then from the design {1, 15,23, 28} and {1, 16,21, 25}, C(s) should have one fror
{15, 23) and one from {16,21}. Suppose we assume that 15 and 16 belong to C(s), then C(s) ca
have none of 9, 10, 11, and 12, from the designs {9,12,15,16} and {10,11,15,16}. This impli
that 17 and 8 belong to C(s) from the designs {10,11, 14,17} and {8,9,14,25}. From the desig
{8,9,15,23} and {8,11,14,19), C(s) can not have 19, nor 23. Moreover, from the design {5, 1t
18,23} C(s) must have 5 and 18, and can not have 13 because of the design (5,13, 16,20}.
follows a contradiction because |C(s)1Y|=1 for the design Y=1{2,13,19,23}F. It forces us
take a look at the other choices rather than {15,16} for the intersection C(s) with the designs {
15,23, 28} and {1, 16, 21, 25}). However, it is easy to see that we will have the same contradictic
Similarly, we can check that there is no such s& X, that satisfies |C(s) N {1,14,25,28}{=2. TI
tells us there is no attachable regular poset except the trivial ones. For the graph J,and J,, itc

be shown analogously.

We note that it is not known if there is any non-regular poset which characterizes the desi
in any of the graphs J;, J,, or J..

Acknowledgments: I wish to thank my advisor Professor Eiich Bannai for suggesting this i

blem and for his valuable advice.
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5. Appendix

1. The adjacency matrix of J; [5].

P et b

=t

SO O O O O O O O © O O o O O =

11111111111 100O0O0O0TG 0O
01 111100000111 11C0°0
10111001 10D0TCO0CCO0 100011
11011001 010010110000
11100101101 0001061010
1110001010101 O01 006071
1 0010010011101 011°¢00
1600011001011 001110090
011100001101 0O0O0OO0O0TI O
61001011001 1O0000O0T11
0 0110101001 100O0TUO0TUO0OTUO0O0
000011101101 00O0TD0CO0CO01
6 000O06TI1I 1111100000100
l1110100060000O0OT1T10T1°0°1
1101010000O0OO0TI1IUO0O0OT1T1TI1T1
1010101000CO0O0TI1TO0CO0 100
100101 1000000110110
looogoo0o110o00001T11 11000
00101006011 000010100°1
6100100010101 1000T1T@0
01000001 10011100111
6011000101 000011010
0010100001101 01000°1
0 0100001010110 1010°0
6 0010100011001 01011
6 0001010101000 11011
0 000O0OI1O0C0CGCO0O1T1T1T1T1OQ0QO0T1TQ01
0 000DO0DO0OTI1ITI11O00 0 011110

o O oo o O = o O

—

[ B = R

LT T — R = I T -« B T s T T = T = N S T )

[ = = e = T T B = Y - B e B o

[ R == T == S oo B T o - B o B - §

ot

— O e e

L R = = T T - B <o B e

—

(= R L T o e B N o R e T = DL T = D ™ Y <o B~ B ]

o M~ O O O O OO =2 O O o

=

_ O O O O ko e OO O e O

o O O = O = O o o O

[T

S e OO e O e e O e O OO

o O O o o

—_ O e o

- O

_ O O O o O e O e - O o O

— QOO O MO O O O oo ©

[ R = R e T R = R e N " e = T = =)

_= - O 00 O O o ©

O O O e O e e O e e e e DO OO

/




66

— At et ek

b et e

O O O O O O O O O O O O O O O r4 o pd s

L e e T s DY o S SEPY

ol e o T SR = B v B = B < S <= S G

o O O o o o O o o o

2. The adjacency matrix of J, [5].

Ll -2 =T T I R oo S OUF R

OOOOOOOOHD—!OOHHHQCH

1
1
1
0
1
1
Q
0
1
0
0
1
0
1
1
0
0
0
0
0
1
1
1
0
0
0
0
0

[ R e R . T o Ny Sy

OOOH)—!OOHOOOOO)—‘)—‘HOOHOO

O O e D e

—_ et

)—‘OOOP—I)—JOOOOD—‘OO

O O = O O

1

—

L= = R = T e = R S — =)

[ e R e = = N = N — T = T~ T

o O

L T =~ e B S Y =S S S Y o S = T ==

- - O O o O O o o o

1

- O O O e

fary

OOOOOOHHD—IOOOHOHHOH

[ = RV S W

[ B e R === =)

OOOOOHO»—‘O)—-Q)—AOMOHOH

[ae T e s TR S < B o Y oo SO I

e - I S S S = T = T = T =T U SN

OO O QO D e e

fy

O et D e OO

(= " I

(== T B =o B < B = S < S

e e o o N o R

L == T T = T v T o S

L ]

LR e N o T = R = B R <= BN « B = B < B T = T = T =

0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
0
1
¢
1
1
0
1
0
0
1
0

Song

HOOD—‘O)—IOHHOHOHO!—‘OOOOOOOOHH'—‘HO
HHOOOOOOA—-‘D—JH)—‘O)—‘I—‘OOD—JOOHOOOON—‘HO

o OO O e O

—

[l == o B == == o= T e S v B e

— OO

O e e O e O

e OO O = O

HOHHOHOO)—IOOHHHOOOOOO)—A

L== R v N . N = e ==

S O DO e D O O e b e

P—

[T - T - S S con

(= =~ N N = e L )

Lo B == B (T T v S - S oo S S SO G

T == R = e T v Y e S o SR WY

[ <> S = T o S o B s B oo S GUPEE PR e S o S -

L L - L — L - S S VPO

[ TR = S e T U WOF S Y

I - - e e — S S - S < S e T~ T T S S

L= e T == T = S S oo S SO o SR Y

I T R e S - B <= S S = T = T — S VS S S o S <o

D e ke O D e b O

L - — T U - B - S T Y - S = I = T =)

e = T S oo B v

O O = = O

[ S = S - S S G SR = TR = TR o S <on S e ]

QOQH»—HHO)—AHHHOOOOOO

OO e O 000 O o ©

(= B L T o Sy ey

—

—_ o O O

L R T I e T e O = T = T S S e S o P S

<

(= =]




OO0 O O O O O QO O O O O O O QO 4 kd b et e b e et e e el e O
[ T e TR o T oo BN oo S <o B con B oo R o e < B e T o O T Sy S S o BN < SN - SRR oo SN - SN SO S A S T Uy A Sy AP S S Ty

4

Posets Related to Some Association Schemes

3. The adjacency matrix of J, [5].
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4. The list of 1-designs of size 4 in J,

{1, 14, 25, 28},
{1,186, 21, 25},
{1,18, 20, 22},
{2,11, 20, 28},
{2,13,19, 23},
{3, 8,22,27},
{3,12, 18,22},
{4, 7,21,26},
{4, 10, 18, 25},
{4, 13, 15, 26},
{5, 821,23},
{5,12, 16, 21},
{6, 7,21,22},
{6,11, 17,21},
{7, 9,16, 20},
{8,11, 14, 19},
{10, 11,15, 16}

S. Y. Song

{1, 15,23, 28},
{1,17, 20, 24},
{2, 9,26,27},
{2,11, 21, 26},
{2,13, 20, 22},
{3, 8,24,25},
{3,13, 16, 25},
{4, 8,19,27},
{4,12,15, 28},
{4,13,17, 20},
{5, 10, 16,27},
{5, 13, 14, 26},
{6, 9,17,27},
{6,11, 18,19},
{7,10, 14, 22},
{9, 12, 14,17},

(1,15, 24, 26},
(1,17, 21,23},
(2,10, 22,27},
(2,12, 19, 24},
{3, 7,23,28),
(3,11, 18, 26},
(3,18,17, 23},
{4, 8,21,25},
{4,12,17, 21},
{5, 6,27,28},
{5, 10, 18, 23},
(5,13, 16, 20},
{6, 9,18,25},
{6, 13, 15, 22},
{8, 9,14,25},

{1, 16, 19, 27},
{1,18, 19,23},
{2, 10, 24, 25},
{2, 12, 21, 22},
{3, 7,24, 26},
{3.12,17, 24},
{4, 7,20,27},
{4,10,17,27},
{4,12,18,19},
{5, 8,20,24},
{5, 12, 14, 28},
{6, 7,19,24),
(6,11, 15, 28},
{7, 9,14, 26},
{8, 9,15,23},

{9, 12,15, 16}, {10, 11, 14,17},
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