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Abstract. Necessary and sufficient conditions have been provided for some standard

regressive transformation semigroups on a poset to be eventually regular. Our main pur-

pose is to generalize this result by characterizing when their generalized semigroups are

eventually regular.

1. Introduction

For a semigroup S, let E(S) and RegS denote respectively the set of all idem-
potents and the set of all regular elements of S. That is,

E(S) = { x ∈ S | x2 = x } and
RegS = { x ∈ S | x = xyx for some y ∈ S }.

Then E(S) ⊆ RegS. An element a ∈ S is said to be eventually regular if an ∈ RegS
for some positive integer n, and we call S an eventually regular semigroup if every
element of S is eventually regular. Note that every regular semigroup and every
finite semigroup is eventually regular.

For a set X, let P (X), T (X) and I(X) be respectively the partial transforma-
tion semigroup on X, the full transformation semigroup on X and the 1-1 partial
transformation semigroup on X (the symmetric inverse semigroup on X). It is
known that all P (X), T (X) and I(X) are regular. We denote the domain and the
image of α ∈ P (X) by domα and imα, respectively. For α ∈ P (X), α is said to be
almost identical if S(α) is finite where S(α) = {x ∈ domα | xα 6= x}. Let

AP (X) = { α ∈ P (X) | α is almost identical },
AT (X) = { α ∈ T (X) | α is almost identical },
AI(X) = { α ∈ I(X) | α is almost identical }.
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It is known that AP (X), AT (X) and AI(X) are regular subsemigroups of
P (X), T (X) and I(X), respectively.

Next, let X be a poset. A point x ∈ X is said to be isolated if for y ∈ X, y ≤
x or x ≤ y implies x = y, and we call X isolated if every point x ∈ X is an isolated
point of X. An element α ∈ P (X) is said to be regressive if xα ≤ x for all x ∈ dom
α. Let

PRE(X) = { α ∈ P (X) | α is regressive },
APRE(X) = { α ∈ AP (X) | α is regressive }.

and TRE(X), ATRE(X), IRE(X) and AIRE(X) are defined similarly. Then
APRE(X) ⊆ PRE(X) ⊆ P (X) and PRE(X) and APRE(X) are subsemigroups of
P (X) and AP (X), respectively. We obtain similar results for TRE(X), ATRE(X),
IRE(X) and AIRE(X). By a regressive transformation semigroup on X and a re-
gressive almost identical transformation semigroup on X we mean a subsemigroup
of PRE(X) and a subsemigroup of APRE(X), respectively.

Some known results of regressive transformation semigroups and regressive al-
most identical transformation semigroups are as follows: A.Umar [3] has shown that
if X is a finite chain, then the subsemigroup S = { α ∈ TRE(X) | |imα| < |X| }
of TRE(X) is generated by E(S) and S is not regular if |X| ≥ 3. A. Umar [4]
proved that if X and Y are chains, then TRE(X) ∼= TRE(Y ) if and only if
X and Y are order-isomorphic. To generalize this result, T. Saitô, K. Aoki and
K. Kajitori [2] have given a necessary and sufficient condition for any posets
X and Y so that TRE(X) ∼= TRE(Y ). Y. Kemprasit [1] characterized when
PRE(X), TRE(X), IRE(X), APRE(X), ATRE(X) and AIRE(X) are regular and
eventually regular where X is any poset.

Our main purpose is to generalize the result in [1] mentioned above by con-
sidering the semigroup (S(X), θ) where X is a poset, S(X) is a subsemigroup of
PRE(X), θ ∈ S(X) and the operation is ∗ defined by α∗β = αθβ for all α, β ∈ S(X).
We call the semigroup (S(X), θ) a regressive generalized transformation semigroup
on X, and it is called a regressive almost identical generalized transformation semi-
group on X if S(X) ⊆ APRE(X). To distinguish αn in the semigroup S(X) and
the product α ∗ α · · · ∗ α (n times) in the semigroup (S(X), ∗) = (S(X), θ) where
α ∈ S(X) and n is a positive integer, we shall use (α, θ)n to denote the later product.
For examples, (α, θ)2 and (α, θ)4 denote αθα and αθαθαθα, respectively.

In the remainder, let X be any poset and N the set of natural numbers (positive
integers).

2. Regular regressive generalized transformation semigroups

It is known from [1] that RegS(X) = E(S(X)) for every regressive transforma-
tion semigroup S(X) on X. The first proposition shows that this is also true for all
regressive generalized transformation semigroups on X.

Proposition 2.1. If S(X) is a regressive transformation semigroup on X, then
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Reg(S(X), θ) = E(S(X), θ) for every θ ∈ S(X).

Proof. Let α ∈ Reg(S(X), θ). Then α = αθβθα for some β ∈ S(X) and thus for
x ∈ dom α, xα = xαθβθα = (xαθβ)θα ≤ xαθβ = (xα)θβ ≤ xα which implies that
xα = xαθβ for every x∈ dom α. Hence xα = (xαθβ)θα = xαθα = x(α, θ)2 for all
x ∈ dom α. But dom αθα ⊆ dom α, so α = (α, θ)2 ∈ E(S(X), θ). ¤

The following two lemmas from [1] are useful to characterize regular regressive
generalized transformation semigroups in the next two theorems.

Lemma 2.2 ([1]). Let S(X) be PRE(X), IRE(X), APRE(X) or AIRE(X). Then
S(X) is regular if and only if X is isolated.

Lemma 2.3 ([1]). Let S(X) be TRE(X) or ATRE(X). Then S(X) is regular if and
only if |C| ≤ 2 for every chain C of X.

Theorem 2.4. Let S(X) be PRE(X), IRE(X), APRE(X) or AIRE(X) and θ ∈
S(X). Then (S(X), θ) is regular if and only if θ = 1X and X is isolated.

Proof. Assume that (S(X), θ) is regular. But Reg(S(X), θ) = E(S(X), θ) by
Proposition 2.1, so (S(X), θ) = E(S(X), θ). Since 1X ∈ S(X), 1X = 1Xθ1X , so
θ = 1X . Then (S(X), θ) = S(X). It thus follows from Lemma 2.2 that X is
isolated.

The converse follows directly from Lemma 2.2. ¤

Theorem 2.5. Let S(X) be TRE(X) or ATRE(X) and θ ∈ S(X). Then (S(X), θ)
is regular if and only if θ = 1X and |C| ≤ 2 for every chain C of X.

Proof. Using Proposition 2.1 and Lemma 2.3, the proof of the theorem can be given
similarly to that of Theorem 2.4. ¤

3. Main results

To obtain the first main result, the following two lemmas are required.

Lemma 3.1. Let θ ∈ PRE(X). If there exists a positive integer n such that every
chain of X of the form

x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ · · · ≥ xm ≥ xmθ

with xi ∈ dom θ has length at most n, then for every α ∈ PRE(X), (α, θ)n+2

∈ E(PRE(X), θ).

Proof. Let α ∈ PRE(X) and x ∈ dom(αθ)n+1. By assumption, the chain

xα ≥ xαθ ≥ xαθα ≥ · · · ≥ x(αθ)nα ≥ x(αθ)n+1

has length at most n, so its subchain

xαθ ≥ x(αθ)2 ≥ · · · ≥ x(αθ)n+1
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has length at most n. This implies that x(αθ)i = x(αθ)i+1 for some i ∈
{1, 2, · · · , n}. But x ∈ dom(αθ)n+1, so x(αθ)i ∈ dom(αθ)n+1−i. We then de-
duce that x(αθ)n+1 = x(αθ)i(αθ)n+1−i = x(αθ)i+1(αθ)n+1−i = x(αθ)n+2. Since
x is arbitrary in dom(αθ)n+1 and dom(αθ)n+2 ⊆ dom(αθ)n+1, it follows that
(αθ)n+1 = (αθ)n+2. Thus (α, θ)n+2 = (αθ)n+1α = (αθ)n+2α = (α, θ)n+3. Con-
sequently, (α, θ)n+2 ∈ E(PRE(X), θ). ¤

The following corollary is a direct consequence of Lemma 3.1.

Corollary 3.2. Let (S(X), θ) be a regressive generalized transformation semigroup
on X. If there exists a positive integer n such that every chain of X of the form

x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ · · · ≥ xm ≥ xmθ

with xi ∈ dom θ has length at most n, then (S(X), θ) is eventually regular. In
particular, if im θ is finite, then (S(X), θ) is eventually regular.

Lemma 3.3. Let S(X) be PRE(X), TRE(X) or IRE(X) and θ ∈ S(X). If X
contains a sequence of pairwise disjoint finite chains C1, C2, C3, · · · such that each
Ci is of the form

x1 ≥ x1θ > x2 ≥ x2θ > · · · > xki ≥ xkiθ,

with xi ∈ dom θ and k1 < k2 < k3 < · · · , then (S(X), θ) is not eventually regular.

Proof. For each i ∈ N, let

Ci = {xi1, xi1θ, xi2, xi2θ, · · · , xiki , xikiθ }
where xi1 ≥ xi1θ > xi2 ≥ xi2θ > · · · > xiki ≥ xikiθ.

We assume that k1 ≥ 2, otherwise we consider the sequence C2, C3, C4, · · · in-
stead. To show that (S(X), θ) is not eventually regular, define α from the set⋃∞

i=1{xi1θ, xi2θ, · · · , xi,ki−1θ} onto the set
⋃∞

i=1{xi2, xi3, · · · , xi,ki} by

(xijθ)α = xi,j+1 for i ∈ N and j ∈ {1, 2, · · · , ki − 1}.

The map α is well-defined because C1, C2, C3, · · · are pairwise disjoint. Then α ∈
IRE(X). Let n ∈ N. Since the sequence k1, k2, k3, · · · of positive integers is strictly
increasing, km > 2n for some m ∈ N. We then deduce that

(xm1θ)(α, θ)n = (xm1θ)(αθ)n−1α = xm,n+1

> xm,2n+1 = (xm1θ)(α, θ)2n.

This proves that (α, θ)n 6= (α, θ)2n for every n ∈ N. Thus (α, θ)n /∈ E(PRE(X),
θ) for every n ∈ N. By Proposition 2.1, α is not eventually regular in (S(X), θ) if
S(X) is PRE(X) or IRE(X).

Next, assume that S(X) = TRE(X). Then θ ∈ TRE(X) ⊆ PRE(X). Let β : X→
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X be defined by xβ = xα if x ∈ dom α and xβ = x if x ∈ X \ dom α. Then β ∈
TRE(X). If n ∈ N, from the above proof, there exists an element y ∈ domα such that
y(α, θ)n > y(α, θ)2n, that is, y(αθ)n−1α > y(αθ)2n−1α. Consequently, y(βθ)n−1β =
y(αθ)n−1α > y(αθ)2n−1α = y(βθ)2n−1β which implies that (β, θ)n 6= (β, θ)2n. We
therefore have from Proposition 2.1 that β is not eventually regular in (TRE(X), θ).
¤

Lemma 3.3 gives a remarkable result as follows :

Corollary 3.4. Let S(X) be PRE(X), TRE(X) or IRE(X). If X does not have a
minimal element, then (S(X), θ) is not eventually regular for every θ ∈ S(X) with
domθ = X.

Proof. Let x1 ∈ X. Thus x1 ≥ x1θ. By assumption, x1θ is not a minimal element,
so x1θ > x2 for some x2 ∈ X. Then x1 ≥ x1θ > x2 ≥ x2θ. By this process, we
obtain a sequence

x1 ≥ x1θ > x2 ≥ x2θ > x3 ≥ x3θ > · · · .

Let (kn) be a strictly increasing sequence of positive integers such that k1 > 1 and
let li = k1 + k2 + · · ·+ ki for all i ∈ N. Define the chain Ci for i ∈ N as follows:

C1 = {x1, x1θ, · · · , xl1 , xl1θ}
C2 = {xl1+1, xl1+1θ, · · · , xl2 , xl2θ}
C3 = {xl2+1, xl2+1θ, · · · , xl3 , xl3θ}

...

Then each Ci is a finite chain of X, Ci ∩Cj = φ if i 6= j and each Ci is of the form
y1 ≥ y1θ > y2 ≥ y2θ > · · · > yki ≥ ykiθ. Therefore we have from Lemma 3.3 that
(S(X), θ) is not eventually regular. ¤

Now we are ready to give the first main result.

Theorem 3.5. Let S(X) be PRE(X), TRE(X) or IRE(X) and θ ∈ S(X). Then
(S(X), θ) is eventually regular if and only if there exists a positive integer n such
that every chain of X of the form

(1) x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ · · · ≥ xm ≥ xmθ

with xi ∈ dom θ has length at most n.

Proof. If there is an element n ∈ N such that every chain of X of the form (1) has
length at most n, then by Corollary 3.2, (S(X), θ) is eventually regular.

It is clear that the chain (1) can be revised as follows : If there is an i ∈ N
such that xi = xiθ = xi+1 in (1), then we can replace xi = xiθ = xi+1 by xi+1

and the revised chain is still of the form (1). Also, if there is an i ∈ N such that
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xiθ = xi+1 = xi+1θ in (1), then this can be replaced by xiθ and the revised chain
is still of the form (1). Hence (1) can be considered as

x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ · · · ≥ xm ≥ xmθ(2)
with xi ∈ dom θ and any three consecutive terms not identical.

To prove necessity by contrapositive, assume that

for every n ∈ N, there is a chain of X of the form (2)(3)
of length greater than n.

In the remainder of the proof of all xi and xij which we use always belong to dom θ.
First suppose that

(4) X does not contain any chain of the form x1 ≥ x1θ > x2 ≥ x2θ.

Let C(1) be a chain of X of the form (2). If C(1) contains a chain x1 ≥ x1θ ≥
x2 ≥ x2θ, then by (2) and (4), x1 > x1θ = x2 > x2θ. If C(1) contains a chain
x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ · · · ≥ xm ≥ xmθ with m ≥ 3, then by (2) and (4),
x1 > x1θ = x2 > x2θ = x3 > x3θ, and so x1 > x1θ > x3 > x3θ which is contrary to
(4). Hence |C(1)| ≤ 3. This shows that every chain of X of the form (2) has length
at most 3 which contradicts (3). Then X contains a chain

C1 = {x11, x11θ, x12, x12θ} where x11 ≥ x11θ > x12 ≥ x12θ.

Next, consider the subposet X r C1 of X and suppose

X r C1 does not contain any chain of the form(5)
x1 ≥ x1θ > x2 ≥ x2θ > x3 ≥ x3θ.

Let C(2) be a chain of X r C1 the form (2). If C(2) contains x1 ≥ x1θ ≥ x2 ≥
x2θ ≥ x3 ≥ x3θ ≥ x4 ≥ x4θ, then by (5), there are at least 2 of x1θ ≥ x2, x2θ ≥ x3

and x3θ ≥ x4 must be equalities. If x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ · · · ≥ xm ≥ xmθ with
m ≥ 5 is a chain in C(2), then x1θ > x3 and x3θ > x5 since any three consecutive
terms of the chain cannot be identical, and hence x1 ≥ x1θ > x3 ≥ x3θ > x5 ≥ x5θ
which contradicts (5). Thus |C(2)| ≤ 6. We therefore deduce that every chain of
X r C1 of the form (2) has length at most 6. Consequently, every chain of X of
the form (2) has length at most |C1| + 6 which is contrary to (3). Thus X r C1

contains a chain

C2 = {x21, x21θ, x22, x22θ, x23, x23θ}
where x21 ≥ x21θ > x22 ≥ x22θ > x23 ≥ x23θ.

Thus C1∩C2 = ∅. For one more step, consider the subposet Xr(C1∪C2). Suppose
that

X r (C1 ∪ C2) does not contain any chain of the form(6)
x1 ≥ x1θ > x2 ≥ x2θ > x3 ≥ x3θ > x4 ≥ x4θ.
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Let C(3) be a chain of X r (C1 ∪ C2) of the form (2). If C(3) contains a chain
x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ x3 ≥ x3θ ≥ x4 ≥ x4θ ≥ x5 ≥ x5θ ≥ x6 ≥ x6θ, then
by (6), there are at least 3 of x1θ ≥ x2, x2θ ≥ x3, x3θ ≥ x4, x4θ ≥ x5 and
x5θ ≥ x6 must be equalities. If x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ · · · ≥ xm ≥ xmθ with
m ≥ 7, then x1θ > x3, x3θ > x5 and x5θ > x7 since any three consecutive terms
of the chain cannot be identical. This implies that X r (C1 ∪ C2) contains a chain
x1 ≥ x1θ > x3 ≥ x3θ > x5 ≥ x5θ > x7 ≥ x7θ which contradicts (6). Hence
|C(3)| ≤ 9. Hence every chain of Xr (C1∪C2) of the form (2) has length at most 9,
and thus every chain of X of the form (2) has length at most |C1|+ |C2|+ 9. This
is a contradiction because of (3), and therefore X r (C1 ∪ C2) contains a chain

C3 = {x31, x31θ, x32, x32θ, x33, x33θ, x34, x34θ}
where x31 ≥ x31θ > x32 ≥ x32θ > x33 ≥ x33θ > x34 ≥ x34θ.

Then C1, C2 and C3 are pairwise disjoint. By this process, we obtain a sequence of
pairwise disjoint finite chains C1, C2, C3, · · · of X such that each Ci is the chain

xi1 ≥ xi1θ > xi2 ≥ xi2θ > · · · > xi,i+1 ≥ xi,i+1θ.

We then deduce from Lemma 3.3 that (S(X), θ) is not eventually regular.
Hence the theorem is completely proved. ¤
It is easily seen that the following two statements on X are equivalent.
(i) There is a positive integer n such that every chain of the form x1 ≥ x2 ≥

· · · ≥ xm has length at most n.
(ii) There is a positive integer n such that |C| ≤ n for every chain C of X .

Hence the following result given in [1] becomes our special case.

Corollary 3.6. Let S(X) be PRE(X), TRE(X) or IRE(X). Then S(X) is eventu-
ally regular if and only if there is a positive integer n such that |C| ≤ n for every
chain C of X .

It was proved in [1] that every regressive almost identical transformation semi-
group on X is always eventually regular. Our second main purpose is to show that
this is also true for regressive almost identical generalized transformation semi-
groups. It then follows that the known result mentioned above is a consequence of
our second main result.

Theorem 3.7. If S(X) is a regressive almost identical transformation semigroup
on X , then (S(X), θ) is eventually regular for every θ ∈ S(X).

Proof. Let α ∈ S(X). Then αθ ∈ S(X), so S(αθ) is finite, say |S(αθ)| = n. Let x ∈
dom (αθ)n+2. Then

x(αθ) ≥ x(αθ)2 ≥ · · · ≥ x(αθ)n+2.

If x(αθ) > x(αθ)2 > · · · > x(αθ)n+2, then {x(αθ), x(αθ)2, · · · , x(αθ)n+1} ⊆
S(αθ) and

∣∣{x(αθ), x(αθ)2, · · · , x(αθ)n+1}
∣∣ = n + 1, a contradiction. Thus

x(αθ)i = x(αθ)i+1 for some i ∈ {1, 2, · · · , n + 1}. Since x ∈ dom (αθ)n+2, x(αθ)i ∈
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dom (αθ)n+2−i, so x(αθ)n+2 = x(αθ)n+3. But x is arbitrary in dom (αθ)n+2 and
dom (αθ)n+3 ⊆ dom (αθ)n+2, so we have (αθ)n+2 = (αθ)n+3. Hence (α, θ)n+3 =
(αθ)n+2α = (αθ)n+3α = (α, θ)n+4, and thus (α, θ)n+3 ∈ E(S(X), θ).

Therefore the proof is complete. ¤
Corollary 3.8. If S(X) is a regressive almost identical transformation semigroup
on X , then S(X) is eventually regular. In particular, APRE(X), ATRE(X) and
AIRE(X) are all eventually regular.
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