DOI QR코드

DOI QR Code

GEOMETRIC REPRESENTATIONS OF FINITE GROUPS ON REAL TORIC SPACES

  • Cho, Soojin (Department of Mathematics Ajou University) ;
  • Choi, Suyoung (Department of Mathematics Ajou University) ;
  • Kaji, Shizuo (Institute of Mathematics for Industry Kyushu University)
  • Received : 2018.09.23
  • Accepted : 2018.10.30
  • Published : 2019.09.01

Abstract

We develop a framework to construct geometric representations of finite groups G through the correspondence between real toric spaces $X^{\mathbb{R}}$ and simplicial complexes with characteristic matrices. We give a combinatorial description of the G-module structure of the homology of $X^{\mathbb{R}}$. As applications, we make explicit computations of the Weyl group representations on the homology of real toric varieties associated to the Weyl chambers of type A and B, which show an interesting connection to the topology of posets. We also realize a certain kind of Foulkes representation geometrically as the homology of real toric varieties.

Keywords

References

  1. H. Abe, Young diagrams and intersection numbers for toric manifolds associated with Weyl chambers, Electron. J. Combin. 22 (2015), no. 2, Paper 2.4, 24 pp. https://doi.org/10.37236/4307
  2. A. Al-Raisi, Equivariance, module structure, branched covers, strickland maps and co-homology related to the polyhedral product functor, Doctoral dissertation, University of Rochester, 2014.
  3. A. Bahri, M. Bendersky, F. Cohen, and S. Gitler, The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces, Adv. Math. 225 (2010), no. 3, 1634-1668. https://doi.org/10.1016/j.aim.2010.03.026
  4. M. Benard, On the Schur indices of characters of the exceptional Weyl groups, Ann. of Math. (2) 94 (1971), 89-107. https://doi.org/10.2307/1970736
  5. A. Bjorner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. in Math. 52 (1984), no. 3, 173-212. https://doi.org/10.1016/0001-8708(84)90021-5
  6. L. Cai and S. Choi, On the topology of a small cover associated to a shellable complex, preprint, arXiv:1604.06988, 2016.
  7. S. Choi, S. Kaji, and H. Park, The cohomology groups of real toric varieties associated to Weyl chambers of type C and D, preprint, arXiv:1705.00275, 2017.
  8. S. Choi, S. Kaji, and S. Theriault, Homotopy decomposition of a suspended real toric space, Bol. Soc. Mat. Mex. (3) 23 (2017), no. 1, 153-161. https://doi.org/10.1007/s40590-016-0090-1
  9. S. Choi, B. Park, and H. Park, The Betti numbers of real toric varieties associated to Weyl chambers of type B, Chin. Ann. Math. Ser. B 38 (2017), no. 6, 1213-1222. https://doi.org/10.1007/s11401-017-1032-6
  10. S. Choi and H. Park, A new graph invariant arises in toric topology, J. Math. Soc. Japan 67 (2015), no. 2, 699-720. https://doi.org/10.2969/jmsj/06720699
  11. S. Choi and H. Park, On the cohomology and their torsion of real toric objects, Forum Math. 29 (2017), no. 3, 543-553. https://doi.org/10.1515/forum-2016-0025
  12. CHomP, Computational homology project, http://chomp.rutgers.edu/.
  13. M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417-451. https://doi.org/10.1215/S0012-7094-91-06217-4
  14. I. Dolgachev and V. Lunts, A character formula for the representation of a Weyl group in the cohomology of the associated toric variety, J. Algebra 168 (1994), no. 3, 741-772. https://doi.org/10.1006/jabr.1994.1251
  15. M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000.
  16. L. Geissinger and D. Kinch, Representations of the hyperoctahedral groups, J. Algebra 53 (1978), no. 1, 1-20. https://doi.org/10.1016/0021-8693(78)90200-4
  17. P. Hanlon, The characters of the wreath product group acting on the homology groups of the Dowling lattices, J. Algebra 91 (1984), no. 2, 430-463. https://doi.org/10.1016/0021-8693(84)90113-3
  18. A. Henderson, Rational cohomology of the real Coxeter toric variety of type A, in Configuration spaces, 313-326, CRM Series, 14, Ed. Norm., Pisa, 2012. https://doi.org/10.1007/978-88-7642-431-1_14
  19. A. Henderson and G. Lehrer, The equivariant Euler characteristic of real Coxeter toric varieties, Bull. Lond. Math. Soc. 41 (2009), no. 3, 515-523. https://doi.org/10.1112/blms/bdp023
  20. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511623646
  21. P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167-189. https://doi.org/10.1007/BF01392549
  22. C. Procesi, The toric variety associated to Weyl chambers, in Mots, 153-161, Lang. Raison. Calc, Hermes, Paris, 1990.
  23. E. M. Rains, The homology of real subspace arrangements, J. Topol. 3 (2010), no. 4, 786-818. https://doi.org/10.1112/jtopol/jtq027
  24. B. E. Sagan, The Symmetric Group, second edition, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-6804-6
  25. L. Solomon, A decomposition of the group algebra of a finite Coxeter group, J. Algebra 9 (1968), 220-239. https://doi.org/10.1016/0021-8693(68)90022-7
  26. R. P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), no. 2, 132-161. https://doi.org/10.1016/0097-3165(82)90017-6
  27. R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, in Graph theory and its applications: East and West (Jinan, 1986), 500-535, Ann. New York Acad. Sci., 576, New York Acad. Sci., New York, 1989. https://doi.org/10.1111/j.1749-6632.1989.tb16434.x
  28. J. R. Stembridge, Some permutation representations of Weyl groups associated with the cohomology of toric varieties, Adv. Math. 106 (1994), no. 2, 244-301. https://doi.org/10.1006/aima.1994.1058
  29. A. I. Suciu, The rational homology of real toric manifolds, Oberwolfach Reports 2012 (2012), no. 4, 2972-2976.
  30. S. Sundaram, The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice, Adv. Math. 104 (1994), no. 2, 225-296. https://doi.org/10.1006/aima.1994.1030
  31. M. L. Wachs, Poset topology: tools and applications, in Geometric combinatorics, 497-615, IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007.