• 제목/요약/키워드: Pore Water

검색결과 1,903건 처리시간 0.024초

연약지반상에 축조된 농업용저수지의 과잉공극수압 예측과 압밀계수의 비교 (Comparison of Coefficient of Consolidation and Prediction of Excess Pore Water Pressure of Agricultural Reservoir under Embankment on Soft Ground)

  • 이달원;김은호
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.1-9
    • /
    • 2010
  • This study was carried out to comparison of coefficient of consolidation and the prediction of excess pore water pressure in agricultural reservoir on soft clay ground. For the purpose of verification of the proposed equation, laboratory model tests and field tests were performed and excess pore water pressure was compared to those predicted with the Terzaghi's method. The predicted excess pore water pressure according to ponding was very applicable to practice because it was close to the observed data. Also, for the comparison of coefficient of consolidation, the oedometer, constant rate of strain (CRS), and Rowe cell tests were performed. The coefficient of consolidation at the Rowe cell and CRS tests showed a greate increase than in the oedometer test. The ratio of the vertical and horizontal coefficient of consolidation showed a large difference according to various tests method and mixing ratio. Therefore, it is recommended that careful attention should be paid to predicting the required consolidation period in agricultural reservoir.

Evaluation of dynamic earth pressure acting on pile foundation in liquefiable sand deposit by shaking table tests

  • Mintaek Yoo;Seongwon Hong
    • Geomechanics and Engineering
    • /
    • 제38권5호
    • /
    • pp.487-495
    • /
    • 2024
  • In this study, a series of shaking table model tests were performed to evaluate the dynamic earth pressure acting on pile foundation during liquefaction. The dynamic earth pressure acting on piles were evaluated with depth and pile diameters comparing with excess pore water pressure, it means that the kinematic load effect plays a substantial role in dynamic pile behavior during liquefaction. The dynamic earth pressure acting on pile foundations with mass exhibited significant similarity to those without upper mass. Analyzing the non-fluctuating and fluctuating components of both excess pore water pressure and dynamic earth pressure revealed that the non-fluctuating component has a dominant influence. In case of non-fluctuating component, dynamic earth pressure is larger than excess porewater pressure at same depth, and the difference increased with depth and pile diameter. However, in the case of the fluctuating component, the earth pressure tended to be smaller than the excess pore water pressure as the depth increased. Based on the results of a series of studies, it can be concluded that the dynamic earth pressure acting on the pile foundation during liquefaction is applied up to 1.5 times the excess pore water pressure for the non-fluctuating component and 0.75 times the excess pore water pressure for the fluctuating component.

포화점성토의 비배수 CREEP 성질에 의한 공극수압의 거동 (Pore Water Pressure Behavior due to Undrained Creep of Saturated Clay)

  • 강우묵;조성섭;지인택
    • 한국농공학회지
    • /
    • 제30권3호
    • /
    • pp.38-50
    • /
    • 1988
  • carried out to present a rheology model which is able to treat time-dependent properties of clay. The results were summarized as follow ; 1. The slope (a(e1)) of deviator stress in strain rate test was independent on axial strain, and pore water pressure was decreased with increment of strain rate. 2. The pore water pressure in a stress relaxation condition was not changed when the strain rate before stress relaxation was 0.05%/min., but it was increased with increment of time when the strain rate before stress relaxation was 0.2%/min 3. The greater the stress condition (q/qmax) and the strain rate before creep test became, the greater the increment rate of axial strain in creep test became. 4. SEKIGUCHI's constitutive equation was slightly overpredicted while empirical equation proposed in the study was well coincided with measured values. 5. The constitutive equation induced by a strain function could be dealed with a behavior of the pore water pressure increased with increment of elapsed time after primary consolidation.

  • PDF

섬유혼합 점토의 비배수 강도 특성에 대한 연구 (Study on the Undrained Strength Characteristics of Fiber Mixed Clay)

  • 박영곤;장병욱
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.382-387
    • /
    • 1998
  • Triaxial compression tests were run to study on the undrained strength characteristics of fiber mixed kaolin clay(Hadong). The influence of various test parameters such as amount and aspect ratio(ratio of length to diameter) of fiber, confining stress was also investigated. Test results showed that the increase in aspect ratio was increased in deviator stress at failure, but no effect on pore water pressure at failure. Deviator stress at failure was also increased at 0.5% mixing ratio(weight fraction of fiber to that of soil solid) of fiber but it was, thereafter, decreased and wits reached to constant after 2% mixing ratio. On the contrary, Pore water pressure at failure was increased as mixing ratio of fiber was greater than 1%. Deviator stress and pore water pressure of both clay and fiber mixed clay(FMC) at failure were increased as confining stress was increased. Deviator stress of FMC at failure was about 10% larger than that of clay, but pore water pressure of FMC at failure was almost similar to that of clay.

  • PDF

실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 상평형 측정 및 열역학적 예측 (Phase Equilibrium of the Carbon Dioxide and Methane Hydrate in Silica Gel Pores and Thermodynamic Prediction)

  • 강성필
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.477-480
    • /
    • 2007
  • Hydrate phase equilibrium for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal 6, 30, and 100 nm were measured and compared with the cacluated results based on van der Waals and Platteeuw model. At a specific temperature three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal urn pore size were nealy identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data.

  • PDF

연약지반상에 축조된 저수지 제방의 과잉공극수압 예측 (Prediction of Excess Pore Water Pressure of Reservoir Embankment on Soft Ground)

  • 민학규;이달원
    • 한국농공학회논문집
    • /
    • 제50권2호
    • /
    • pp.37-44
    • /
    • 2008
  • A theoretical equation was proposed to consider the effect of ponding for the excess pore water pressure in agricultural reservoir on soft clay ground. The value of excess pore water pressure predicted using the proposed equation was compared to those predicted with the Terzaghi's method and the finite difference method(FDM), respectively, for the purpose of verification. The degree of consolidation according to ponding predicted by applying the proposed equation was close to the observed degree of consolidation on the double drainage condition(at DP-3) but it was less than the observed degree of consolidation on the single drainage condition(at DP-5). The equation was very applicable to practice because the analysis result by the equation was close to the observed data.

DSC구성방정식을 이용한 포화사질토의 액상화 거동 예측 (A Study on Prediction of the Liquefaction Behavior of Saturated Sandy Soils Using DSC Constitutive Equation)

  • 박인준;김수일;정철민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2000
  • In this study, the behavior of saturated sandy soils under dynamic loads - pore water pressure and effective stress - was investigated using Disturbed State Concept(DSC) model. The model parameters are evaluated from laboratory test data. During the process of loading and reverse loading, DSC model is utilized to trace strain-hardening and cyclic softening behavior. The procedure of back prediction proposed in this study are verified by comparing with laboratory test results. From the back prediction of pore water pressure and effective mean pressure under cyclic loading, excess pore water pressure increases up to initial effective confining pressure and effective mean pressure decrease close to zero in good greement with laboratory test results. Those results represent the liquefaction of saturated sandy soils under dynamic loads. The number of cycles at initial liquefaction using the model prediction is in good agreement with laboratory test results. Therefore, the results of this study state that the liquefaction of saturated sandy soils can be explained by the effective tress analysis.

  • PDF

실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 상평형 측정 및 열역학적 예측 (Phase Equilibrium of the Carbon Dioxide and Methane Hydrate in Silica Gel Pores and Thermodynamic Prediction)

  • 강성필
    • 신재생에너지
    • /
    • 제3권2호
    • /
    • pp.47-52
    • /
    • 2007
  • Hydrate phase equilibrium for the binary $CO_{2}$+water and $CH_{4}$+water mixtures in silica gel pore of nominal 6, 30, and 100 nm were measured and compared with the cacluated results based on van der Waals and Platteeuw model. At a specific temperature three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal nm pore size were nearly identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data.

  • PDF

지오텍스타일로 보강된 농업용 저수지 제체의 붕괴거동 (Behavior of Failure of Agricultural Reservoirs Embankment Reinforced by Geotextile under Overtopping Condition)

  • 이달원;노재진
    • 한국농공학회논문집
    • /
    • 제56권2호
    • /
    • pp.59-64
    • /
    • 2014
  • In this study, the large scale test was performed to investigate the behavior of failure for the embankment and spillway transitional zone by overtopping. The pore water pressure, earth pressure, settlement and failure pattern of covering embankment with geotextile were compared and analyzed. The pore water pressure showed a small change in the spillway transition zone and core, indicating that the geotextile efficiently reinforced the embankment. The earth pressure decreased the infiltration of the pore water only in inclined cores type to secure local stability. The behavior of failure started from the bottom and gradually progressed upwards. After the intermediate overtopping period (100 min), width and depth of the seepage erosion were very small due to the effect of geotextile which delayed failure. Therefore, the reinforced method by geotxtile was a very effective method to respond to the emergency due to overtopping.

NATM 터널의 배수시스템 수리기능저하가 터널 라이닝에 미치는 영향 (An Experimental Study on the Effect of Malfunctioning of Drainage System on NATM Tunnel Linings)

  • 신종호;권오엽;신용석;양유홍
    • 한국지반공학회논문집
    • /
    • 제23권6호
    • /
    • pp.77-84
    • /
    • 2007
  • 유입량과 라이닝에 작용하는 간극수압은 터널 설계시 고려해야 할 중요한 요소 중 하나이다. 간극수압의 발생은 누수를 가속화시키며 라이닝 열화를 초래한다. 본 논문에서는 모형실험을 통하여 배수시스템 기능저하로 인한 간극수압의 발생과 그 영향을 조사하였다. 배수시스템 기능저하거동은 배수재의 투수계수제어법과 유량 조절법으로 모사화 하여 터널 라이닝의 잔류수압발생 메카니즘을 확인하였다. 또한, 유량제어법이 배수시스템 기능저하현상을 모사하기에 보다 더 효과적인 방법임을 알 수 있었다. 모형실험을 수치해석으로 재현한 결과, 배수시스템 기능저하로 인한 영향을 Coupled 수치 모델링을 통해 이론적으로 예측 가능함을 확인할 수 있었다.