• Title/Summary/Keyword: Population genetic diversity

Search Result 608, Processing Time 0.024 seconds

Observations on the Genetic Structure of Pinus densiflora Sieb. et Zucc(I) : The Young-il Population (소나무의 유전적(遺傳的) 구조(構造)에 관한 연구(硏究) (I) : 영일(迎日) 집단(集團)의 유전적(遺傳的) 구조(構造))

  • Chung, Min Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.2
    • /
    • pp.246-254
    • /
    • 1991
  • Genetic structure of a Pinus densiflora population consisting of two subpopulations on the north-and south-facing slopes of a mountain was studied by allozyme analysis. Allozyme variants in aspartate aminotransferase(AAT), glutmate dehydrogenase(GDH) and leucine aminopeptidase(LAP) systems are encoded, at least, by eight loci ; five for AAT, one for GDH and two for LAP. Average number of alleles examined over six loci was 3.33. Average heterozygosity and genetic diversity computed over six loci were, respectively, 0.19 and 2.76 for parental population, 0.17 and 2.22 for progeny population. Differences in allelic frequencies between maternal sources at many of the investigated loci were found and between subpopulations on the north- and south-facing slopes. Allele frequencies of maternal origin at some of the loci were significantly different from each other between the two subpopulations. Thus it appears that the matings within and between subpopulations were not random and the mountain ridge that divides the north-and south-facing slopes isolate the two suhpopulations reproductively to a great extent. Some of the genotypes both in parental and progeny(embryo) groups deviate significantly from the Hardy-Weinberg equilibrium state. It appears from the result that the pine population is originated from a few limited ancestral trees and thus consanguineous matings are prevalent in this pine population.

  • PDF

Genetic Improvement of Maize by Marker-Assisted Breeding (분자마커를 활용한 옥수수 육종)

  • Kim, Jae Yoon;Moon, Jun-Cheol;Baek, Seong-Bum;Kwon, Young-Up;Song, Kitae;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.109-127
    • /
    • 2014
  • Maize is one of the most important food and feed crops in the world including Southeast Asia. In spite of numberous efforts with conventional breeding, the maize productions remain low and the loss of yields by drought and downy mildew are still severe in Asia. Genetic improvement of maize has been performed with molecular marker and genetic engineering. Because maize is one of the most widely studied crop for its own genome and has tremendous diversity and variant, maize is considered as a forefront crop in development and estimation of molecular markers for agricultural useful trait in genetics and breeding. Using QTL (Quantitative Trait Loci) and MAS (Marker Assisted Breeding), molecular breeders are able to accelerate the development of drought tolerance or downy mildew resistance maize genotype. The present paper overviews QTL/MAS approaches towards improvement of maize production against drought and downy mildew. We also discuss here the trends and importance of molecular marker and mapping population in maize breeding.

A New Migration Method of the Multipopulation Genetic Algorithms (다중 개체군 유전자 알고리즘의 새로운 이주 방식)

  • Cha, Seong-Min;Gwon, Gi-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • Multipopulation Genetic Algorithm(MPGA) is the modified form of Genetic Algorithm(GA), which was devised for covering for overing the defect of general GA. The core of MPGA is said to be the migration method. The fitness-based migration method and the random migration method are currently used. The random migration method is more general than the other because it keeps the diversity of the population. In this paper, a new migration method is suggested. This method has a merit that it can improve the speed of conergence, compared to the general migration method. This method is compared with the general migration method.

  • PDF

An efficient genetic algorithm for the design optimization of cold-formed steel portal frame buildings

  • Phan, D.T.;Lim, J.B.P.;Tanyimboh, T.T.;Sha, W.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.519-538
    • /
    • 2013
  • The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

Genetic Diversity and Phylogenetic Analysis of South-East Asian Duck Populations Based on the mtDNA D-loop Sequences

  • Sultana, H.;Seo, D.W.;Bhuiyan, M.S.A.;Choi, N.R.;Hoque, M.R.;Heo, K.N.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1688-1695
    • /
    • 2016
  • The maternally inherited mitochondrial DNA (mtDNA) D-loop region is widely used for exploring genetic relationships and for investigating the origin of various animal species. Currently, domestic ducks play an important role in animal protein supply. In this study, partial mtDNA D-loop sequences were obtained from 145 samples belonging to six South-East Asian duck populations and commercial duck population. All these populations were closely related to the mallard duck (Anas platyrhynchos), as indicated by their mean overall genetic distance. Sixteen nucleotide substitutions were identified in sequence analyses allowing the distinction of 28 haplotypes. Around 42.76% of the duck sequences were classified as Hap_02, which completely matched with Anas platyrhynchos duck species. The neighbor-joining phylogenetic tree also revealed that South-East Asian duck populations were closely related to Anas platyrhynchos. Network profiles were also traced using the 28 haplotypes. Overall, results showed that those duck populations D-loop haplotypes were shared between several duck breeds from Korea and Bangladesh sub continental regions. Therefore, these results confirmed that South-East Asian domestic duck populations have been domesticated from Anas platyrhynchos duck as the maternal origins.

Genetic diversity and phylogenetic analysis of genus Paeonia based on nuclear ribosomal DNA ITS sequence

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.234-240
    • /
    • 2011
  • The genus Paeonia belongs to the family Paeoniaceae having significant medicinal and ornamental importance. The present investigation was undertaken with an aim to understand phylogenetic relationships of three Paeonia species (P. lactiflora, P. obovata, and P. suffruticosa) that are widely distributed in China, Korea, and Japan, using nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequence and to compare the phylogeny results with investigations reported earlier using existed sequences of the same species. The size variation obtained among sequenced nrDNA ITS region was narrow and ranged from 722 to 726 bp. The highest interspecific genetic distance (GD) was found between P. lactiflora and P. suffruticosa or P. obovata. The phylogram obtained using our nrDNA ITS sequences showed non-congruence with previous hypothesis of the phylogeny between section Paeonia and section Moutan of genus Paeonia. This result was supported by the phylogenetic relations showed in the phylogram constructed with existed sequences in NCBI. The present study suggested that P. obovata belonging to section Paeonia was phylogenetically closer to P. suffruticosa representing section Moutan of genus Paeonia than P. lactiflora belonging to section Paeonia. The main reason of the paraphyly of section Paeonia is thought to be nucleotide additivity directly caused by origin hybridization. This study provides more sequence sources of genus Paeonia, and will help for further studies in intraspecies population, and their phylogentic analysis and molecular evolution.

Genetic Variation of Monilinia fructicola Population in Korea

  • Su In Lee;Hwa-Jung Lee;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • Brown rot disease, caused by Monilinia spp., poses a significant threat to pome and stone fruit crops globally, resulting in substantial economic losses during pre- and post-harvest stages. Monilinia fructigena, M. laxa, and M. fructicola are identified as the key agents responsible for brown rot disease. In this study, we employed the amplified fragment length polymorphism (AFLP) method to assess the genetic diversity of 86 strains of Monilinia spp. isolated from major stone fruit cultivation regions in South Korea. Specifically, strains were collected from Chungcheong, Gangwon, Gyeonggi, Gyeongsang, and Jeolla provinces (-do). A comparative analysis of strain characteristics, such as isolation locations, host plants, and responses to chemical fungicides, was conducted. AFLP phylogenetic classification using 20 primer pairs revealed the presence of three distinct groups, with strains from Jeolla province consistently forming a separate group at a high frequency. Furthermore, M. fructicola was divided into three groups by the AFLP pattern. Principal coordinate analysis and PERMANOVA were applied to compare strain information, such as origin, host, and fungicide sensitivity, revealing significant partition patterns for AFLP according to geographic origin and host plants. This study represents the utilization of AFLP methodology to investigate the genetic variability among M. fructicola isolates, highlighting the importance of continuous monitoring and management of variations in the brown rot pathogen.

Genetic Algorithm based Pathfinding System for Analyzing Networks (네트워크 분석을 위한 유전 알고리즘 기반 경로탐색 시스템)

  • Kim, Jun-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.119-130
    • /
    • 2014
  • This paper proposes GAPS, a practical genetic algorithm based pathfinding system for conveniently analyzing various networks. To this end, the GAPS is developed through integration of the intuitive graphic user interface for network modeling, the database management system for managing the data generated in modeling and exploring procedures, and a simple genetic algorithm for analyzing a wide range of networks. Especially, previous genetic algorithms are not appropriate for analyzing the networks with many dead-ends where there are few feasible paths between the given two nodes, however, GAPS is based on the genetic algorithm with the fitness function appropriate for evaluating both feasible and infeasible paths, which enables GAPS to analyze a wide range of networks while maintaining the diversity of the population. The experiment results reveal that GAPS can be used to analyze both networks with many dead-ends and networks with few dead-ends conveniently, and GAPS has several advantages over the previous genetic algorithms for pathfinding problems.

Development of novel microsatellite markers to analyze the genetic structure of dog populations in Taiwan

  • Lai, Fang-Yu;Lin, Yu-Chen;Ding, Shih-Torng;Chang, Chi-Sheng;Chao, Wi-Lin;Wang, Pei-Hwa
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1314-1326
    • /
    • 2022
  • Objective: Alongside the rise of animal-protection awareness in Taiwan, the public has been paying more attention to dog genetic deficiencies due to inbreeding in the pet market. The goal of this study was to isolate novel microsatellite markers for monitoring the genetic structure of domestic dog populations in Taiwan. Methods: A total of 113 DNA samples from three dog breeds-beagles (BEs), bichons (BIs), and schnauzers (SCs)-were used in subsequent polymorphic tests applying the 14 novel microsatellite markers that were isolated in this study. Results: The results showed that the high level of genetic diversity observed in these novel microsatellite markers provided strong discriminatory power. The estimated probability of identity (P(ID)) and the probability of identity among sibs (P(ID)sib) for the 14 novel microsatellite markers were 1.7×10-12 and 1.6×10-5, respectively. Furthermore, the power of exclusion for the 14 novel microsatellite markers was 99.98%. The neighbor-joining trees constructed among the three breeds indicated that the 14 sets of novel microsatellite markers were sufficient to correctly cluster the BEs, BIs, and SCs. The principal coordinate analysis plot showed that the dogs could be accurately separated by these 14 loci based on different breeds; moreover, the Beagles from different sources were also distinguished. The first, the second, and the third principal coordinates could be used to explain 44.15%, 26.35%, and 19.97% of the genetic variation. Conclusion: The results of this study could enable powerful monitoring of the genetic structure of domestic dog populations in Taiwan.

Genetic Variation of nSSR Markers in Natural Populations of Abies koreana and Abies nephrolepis in South Korea (남한지역 구상나무와 분비나무 집단에서의 nSSR 표지 유전 변이)

  • Hong, Yong-Pyo;Ahn, Ji-Young;Kim, Young-Mi;Yang, Byeong-Hoon;Song, Jeong-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.577-584
    • /
    • 2011
  • To estimate level of genetic variation and genetic differentiation among populations of 3 populations in Abies koreana and 5 populations in Abies nephrolepis, 5 nSSR markers were analyzed. Except 1 locus where too many alleles were observed excessively, population genetic parameters were recalculated with 4 loci. Mean expected heterozygosities ($H_e$) were 0.292 in A. koreana and 0.220 in A. nephrolepis, respectively. In both species, positive fixation coefficient was estimated (F=0.065 for A. koreana and F=0.095 for A. nephrolepis), which suggests that there is an excess of homozygotes relative to Hardy-Weinberg expectations within populations. Relatively high degree of population differentiation was observed in A. koreana ($F_{ST}=0.063$). compared to that of A. nephrolepis ($F_{ST}=0.039$). From 3-level Hierarchical estimation of F-staticstics, only 4.9% of the genetic variation was allocated between species ($F_{PT}$), which suggested that most of genetic variation was shared between two species. On the basis of results from analysis of genetic relationships among populations, 2 populations of A. koreana (Mt. Halla and Mt. Deogyu) were genetically distinct from the populations of A. nephrolepis but a population of Mt. Jiri was allocated within a group of populations of A. nephrolepis. Populations of both species seemed to have undergone genetic drift due to gradual decrease in population size induced by global warming after the last glacier, which resulted in increase of homozygotes by inbreeding. It could be also postulated that these species might be diverged recently and It is likely that the two species have not fully speciated yet.