DOI QR코드

DOI QR Code

Genetic Variation of nSSR Markers in Natural Populations of Abies koreana and Abies nephrolepis in South Korea

남한지역 구상나무와 분비나무 집단에서의 nSSR 표지 유전 변이

  • Hong, Yong-Pyo (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Ahn, Ji-Young (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Young-Mi (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Yang, Byeong-Hoon (Forest Environment Conservation Division, Korea Forest Service) ;
  • Song, Jeong-Ho (Division of Forest Genetic Resources, Korea Forest Research Institute)
  • 홍용표 (국립산림과학원 산림유전자원과) ;
  • 안지영 (국립산림과학원 산림유전자원과) ;
  • 김영미 (국립산림과학원 산림유전자원과) ;
  • 앙병훈 (산림청 산림환경보호과) ;
  • 송정호 (국립산림과학원 산림유전자원과)
  • Received : 2011.05.30
  • Accepted : 2011.08.30
  • Published : 2011.12.31

Abstract

To estimate level of genetic variation and genetic differentiation among populations of 3 populations in Abies koreana and 5 populations in Abies nephrolepis, 5 nSSR markers were analyzed. Except 1 locus where too many alleles were observed excessively, population genetic parameters were recalculated with 4 loci. Mean expected heterozygosities ($H_e$) were 0.292 in A. koreana and 0.220 in A. nephrolepis, respectively. In both species, positive fixation coefficient was estimated (F=0.065 for A. koreana and F=0.095 for A. nephrolepis), which suggests that there is an excess of homozygotes relative to Hardy-Weinberg expectations within populations. Relatively high degree of population differentiation was observed in A. koreana ($F_{ST}=0.063$). compared to that of A. nephrolepis ($F_{ST}=0.039$). From 3-level Hierarchical estimation of F-staticstics, only 4.9% of the genetic variation was allocated between species ($F_{PT}$), which suggested that most of genetic variation was shared between two species. On the basis of results from analysis of genetic relationships among populations, 2 populations of A. koreana (Mt. Halla and Mt. Deogyu) were genetically distinct from the populations of A. nephrolepis but a population of Mt. Jiri was allocated within a group of populations of A. nephrolepis. Populations of both species seemed to have undergone genetic drift due to gradual decrease in population size induced by global warming after the last glacier, which resulted in increase of homozygotes by inbreeding. It could be also postulated that these species might be diverged recently and It is likely that the two species have not fully speciated yet.

구상나무 3개 집단과 분비나무 5개 집단에 존재하는 유전변이량과 집단간 유전분화를 추정하기 위해서 5개 nSSR 표지를 분석하였다. 유전자좌당 대립유전자가 과다하게 관찰된 1개 유전자좌를 제외한 나머지 유전자좌를 대상으로 통계분석을 실시한 결과, 평균 이형접합체 빈도 기대값($H_e$)이 구상나무는 0.292, 분비나무는 0.220으로 계산되어 구상나무의 유전변이량이 더 큰 것으로 나타났다. 집단내 고정지수(F)는 구상나무가 평균 0.065, 분비나무가 평균 0.095로 양의 값을 나타내어 두 수종 공히 집단 내 동형접합체가 H-W 평형상태에서의 기대 개체수 보다 많은 것으로 나타났다. 집단 간 유전분화를 분석한 결과, 분비나무 집단들에 비해서($F_{ST}=0.039$) 구상나무 집단간 유전분화($F_{ST}=0.063$)가 더 심화된 것으로 나타났다. 두 수종간의 유전분화($F_{PT}$)는 0.049로 나타나 유전변이의 대부분이 두 수종 간에 공유되고 있음이 확인되었다. 집단간 유전적 유연관계를 분석한 결과, 구상나무의 2개 집단(덕유산, 한라산)이 분비나무 집단들과 분리되어 나타났으나 지리산집단은 분비나무 집단들과 그룹을 형성하고 있는 것으로 나타났다. 결론적으로 분석된 대부분의 집단들이 빙하기 이후의 기온 상승으로 산 정상부에 국소적으로 남겨지게 됨에 따라 집단 크기가 점진적으로 감소되어 초래된 유전적 부동과 근친교배의 결과 동형접합체가 증가되었으며, 두 수종의 종분화 과정이 비교적 최근에 일어났으나 아직 충분히 분화되지 못한 상태인 것으로 추정할 수 있었다.

Keywords

References

  1. 강범용. 2002. 구상나무 천연집단의 공간적 유전구조와 교배양식 및 유전자원 보전전략. 서울대학교 대학원 박사학위논문.
  2. 구경아, 박원규, 공우석. 2001. 한라산 구상나무의 연륜연대학적 연구(기후변화에 따른 생장변동 분석). 한국생태학회지 24(5): 281-288.
  3. 김갑태, 추갑철. 2000. 지역별 구상나무 생육현황 비교. 한국환경생태학회지 14(1): 80-87.
  4. 김영두, 김삼식. 1983. 한국산 Abies속의 내외형태학적 특성에 관한 연구. 한국임학회지 62: 68-75.
  5. 김인식. 1998. RAPD marker에 의한 국내 전나무류의 유전적 구조와 유연관계. 서울대학교 박사학위논문. 서울대학교 대학원. pp. 99.
  6. 김인식, 현정오. 2000. RAPD 분석에 의한 구상나무 천연집단의 유전적 다양성. 한국육종학회지 32(1): 12-18.
  7. 김찬수, 이석우, 고정군. 2007. 한라산의 구상나무. 제주특별자치도 한라산연구소. pp. 89-141.
  8. 이강영, 김현권. 1982. 구상나무 천연집단의 침엽형질 변이. 한국임학회지 57: 39-44.
  9. 이석우, 김용율, 현정오, 김진수. 1997. 동위효소 및 RAPD 분석에 의한 소나무 천연집단의 유전변이 비교. 한국육종학회지 29: 72-83.
  10. 이창복. 1970. 구상나무와 새로 발견된 품종. 한국임학회지 10: 5-6.
  11. 임종환, 우수영, 권미정, 김용율. 2007. 한라산 구상나무 건재개체와 쇠약개체의 항산화효소활성 및 토양특성. 한국임학회지 96(1): 14-20.
  12. 송정호, 이정주, 이갑연, 이재천, 김용율. 2007. 분비.구상나무 천연집단의 침엽특성 변이. 한국임학회지 96(4):387-392.
  13. 송정호, 이정주, 강규석. 2008. 구상나무 천연집단의 구과, 종자, 포침특성 변이. 한국임학회지 97(6): 565-569.
  14. 조현제, 배관호, 이창석, 이충화. 2004. 아고산 지역 상록침엽수림 종조성과 구조. 한국임학회지 93(5): 372-379.
  15. 홍용표, 권해연, 김용율. 2006. 국내 소나무 집단에 있어서 cpSSR 표지자 변이체의 분포양상. 한국임학회지 95(4): 435-442.
  16. Altukhov, Y.P. and Salmenkova, E.A. 2002. DNA Polymorphism in Population Genetics. Russian Journal of Genetics 38(9): 989-1008. https://doi.org/10.1023/A:1020288812170
  17. Chapuis, M.P. and Estoup, A. 2007. Microsatellite Null Alleles and Estimation of Population Differentiation. Molecular Biology Evolution 24(3): 621-631.
  18. Cremer, E., Liepelt, S., Sebastiani. F., Buonamici, A., Michalczyk, I.M., Ziegenhagen, B. and Vendramin, G.G. 2006. Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Molecular Ecology Notes 6: 374-376. https://doi.org/10.1111/j.1471-8286.2005.01238.x
  19. Echt, C.S., Vendramin G.G., Nelson C.D. and Marquardt P. 1999. Microsatellite DNA as shared genetic markers among conifer species. Canadian Journal of Forest Research 29: 365-371. https://doi.org/10.1139/x99-009
  20. Felsenstein, J. 1993. PHYLIP(Phylogeny Inference Pakage) version 3.5c. Distributed by the author. Department of Genetics. University of Washington. Seattle. WA. U.S.A.
  21. Hamrick, J.L., Godt M.J.W. and Sherman-Broyles, S.L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95-124. https://doi.org/10.1007/BF00120641
  22. Hansen, O.K., Kjaer, E.D. and Vendramin, G.G. 2005. Chloroplast microsatellite variation in Abies nordmanniana and simulation of causes for low differentiation among populations. Tree Genetics & Genomes 1: 116-123. https://doi.org/10.1007/s11295-005-0016-y
  23. Hartl, D.L. and Clark, A.G. 2007. Principles of population genetics. 4th ed. Sinauer Associates, Inc. Sunderland, Massachusetts. pp. 66-67.
  24. Hong, Y.P., Kwon, H.Y. and Kim, I.S. 2004. I-SSR markers revealed inconsistent phylogeographic patterns among populations of Japanese red pine in Korea. Silvae Genetica 56(1): 22-26.
  25. Kong, W.S. 1998. The Alpine and subalpine Geoecology of the Korean Peninsula. Korean Journal of Ecology 21(4): 383-387.
  26. Kormutak, A., Hong, Y.P., Kwon, H.Y. and Kim, C.S. 2007. Variatuon in trn-L/trn-V and trn-F/trn-T spacer regions of cpDNA in Abies koreana Wilson and A. nephrolepis Traut./Maxims. Journal of Korean Forest Society 96(2): 131-137.
  27. Korshikov, I.I., Pirko, N.N. and Pirko, Y.V. 2005. Genetic variation and differentiation of Abies alba Mill. populations from Ukrainian Carpathians Russian. Journal of Genetics 41(3): 275-283.
  28. Kwon, H.Y. and Kim, Z.S. 2002. ISSR variation within and among Korean populations in Taxus cuspidata. Journal of Korean Forest Society 91(5): 654-660.
  29. Lee, S.W., Hong, Y.P., Kwon, H.Y. and Kim, Z.S. 2006. Population Genetics Studies on Indigenous Conifer in Korea. Forest Science and Technology 2(2): 137-148. https://doi.org/10.1080/21580103.2006.9656309
  30. Lee, S.W., Yang, B.H., Han, S.D., Song, J.H. and Lee, J.J. 2008. Genetic variation in natural populations of Abies nephrolepis Max. in South Korea. Annual Forest Science 65(302): 1-7.
  31. Liewlaksaneeyanawin, C., Ritland, C.E., El-Kassaby, Y.A. and Ritland, K. 2004. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theoretical and Applied Genetics 109: 361-369.
  32. Lynch, M. and Milligan, B.G. 1994. Analysis of population genetic structure with RAPD markers. Molecular Ecology 3: 91-99. https://doi.org/10.1111/j.1365-294X.1994.tb00109.x
  33. Maghuly, F., Pinsker, W., Praznik, W. and Fluch, S. 2006. Genetic diversity in managed subpopulations of Norway spruce (Picea abies (L.) Karst.). Forest Ecology Management 222: 266-271. https://doi.org/10.1016/j.foreco.2005.10.025
  34. Mariette, S., Chagne, D., Lezier, C., Pastuszka, P., Raffin, A., Plomion, C. and Krener, A. 2001. Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86: 469-479. https://doi.org/10.1046/j.1365-2540.2001.00852.x
  35. Moriguchi, Y., Kang, K.S., Lee, K.Y., Lee, S.W. and Kim Y.Y. 2009. Genetic variation of Picea jezoensis populations in South Korea revealed by chloroplast, mitochondirial and nuclear DNA markers. Journal of Plant Research 122: 153-160. https://doi.org/10.1007/s10265-008-0210-8
  36. Nei, M. 1972. Genetic distance between populations. American Naturalist 106: 283-292. https://doi.org/10.1086/282771
  37. Nybom, H. and Bartish, I. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plant. Perspectives in Plant Ecology, Evolution and Systematics 3(2):93-114. https://doi.org/10.1078/1433-8319-00006
  38. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  39. Oosterhout, C.V., Hutchinson, W.F., Wills, P.M. and Shiply, P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  40. Piry, S., Luikart G. and Cornuet, J.M. 1999. BOTTLENECK: a computer program for detecting recent reduction in the effective population size using allele frequency data. Journal of Heredity 90: 502-503. https://doi.org/10.1093/jhered/90.4.502
  41. Scalfi, M., Piotti, A., Rossi, M. and Piovani, P. 2009. Genetic variability of Italian southern Scots pine (Pinus sylvestris L.) populations: the rear edge of the range. European Journal of Forest Reserch 128: 377-386. https://doi.org/10.1007/s10342-009-0273-7
  42. Struss, D. and Plieske, J. 1998. The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics 97: 308-315. https://doi.org/10.1007/s001220050900
  43. Tang, S., Dai, W., Li, M., Zhang, Y., Geng, Y., Wang, L. and Zhong, Y. 2008. Genetic diversity of relictual and endangered plant Abies ziyuanensis(Pinaceae) revealed by AFLP and SSR markers. Genetica 133: 21-30. https://doi.org/10.1007/s10709-007-9178-x
  44. Weiguo, Z., Zhihua, Z., Xuexia, M., Yong, Z., Sibao, W., Jianhua, H., Hui, X., Yile, P. and Yongping, H. 2007. A comparison of genetic variation among wild and cultivated Morus species (Moraceae: Morus) as revealed by ISSR and SSR markers. Biodiversity and Conservation 16: 275-290. https://doi.org/10.1007/s10531-005-6973-5
  45. Weir, B.S. 1990. Genetic Data Analysis. Sinauer Associates, Sinderland, MA. pp. 156-159.
  46. Wilson, E.H. 1920. Four new conifers from Korea. Journal of Arnold Arboretum 1: 186-190.
  47. Wright, S. 1978. Variability within and among Natural Populations. Vol. 4. The University of Chicago Press, Chicago.
  48. Yeh, F.C., Yang, R.C. and Boyle, T. 1999. POPGENE ver. 1.31-Microsoft Window-based freeware for population genetic analysis. Department of Renewable Resources, University of Chicago Press. Chicago. U.S.A.