• Title/Summary/Keyword: Polynomial neuron

Search Result 35, Processing Time 0.024 seconds

Fuzzy and Polynomial Neuron Based Novel Dynamic Perceptron Architecture (퍼지 및 다항식 뉴론에 기반한 새로운 동적퍼셉트론 구조)

  • Kim, Dong-Won;Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2762-2764
    • /
    • 2001
  • In this study, we introduce and investigate a class of dynamic perceptron architectures, discuss a comprehensive design methodology and carry out a series of numeric experiments. The proposed dynamic perceptron architectures are called as Polynomial Neural Networks(PNN). PNN is a flexible neural architecture whose topology is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated on the fly. In this sense, PNN is a self-organizing network. PNN has two kinds of networks, Polynomial Neuron(FPN)-based and Fuzzy Polynomial Neuron(FPN)-based networks, according to a polynomial structure. The essence of the design procedure of PN-based Self-organizing Polynomial Neural Networks(SOPNN) dwells on the Group Method of Data Handling (GMDH) [1]. Each node of the SOPNN exhibits a high level of flexibility and realizes a polynomial type of mapping (linear, quadratic, and cubic) between input and output variables. FPN-based SOPNN dwells on the ideas of fuzzy rule-based computing and neural networks. Simulations involve a series of synthetic as well as experimental data used across various neurofuzzy systems. A detailed comparative analysis is included as well.

  • PDF

Genetically Optimized Hybrid Fuzzy Set-based Polynomial Neural Networks with Polynomial and Fuzzy Polynomial Neurons

  • Oh Sung-Kwun;Roh Seok-Beom;Park Keon-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.327-332
    • /
    • 2005
  • We investigatea new fuzzy-neural networks-Hybrid Fuzzy set based polynomial Neural Networks (HFSPNN). These networks consist of genetically optimized multi-layer with two kinds of heterogeneous neurons thatare fuzzy set based polynomial neurons (FSPNs) and polynomial neurons (PNs). We have developed a comprehensive design methodology to determine the optimal structure of networks dynamically. The augmented genetically optimized HFSPNN (namely gHFSPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of gHFSPNN leads to the selection leads to the selection of preferred nodes (FSPNs or PNs) available within the HFSPNN. In the sequel, the structural optimization is realized via GAs, whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFSPNN is quantified through experimentation where we use a number of modeling benchmarks synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

A new Design of Granular-oriented Self-organizing Polynomial Neural Networks (입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

The Design of Pattern Classification based on Fuzzy Combined Polynomial Neural Network (퍼지 결합 다항식 뉴럴 네트워크 기반 패턴 분류기 설계)

  • Rho, Seok-Beom;Jang, Kyung-Won;Ahn, Tae-Chon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.534-540
    • /
    • 2014
  • In this paper, we propose a fuzzy combined Polynomial Neural Network(PNN) for pattern classification. The fuzzy combined PNN comes from the generic TSK fuzzy model with several linear polynomial as the consequent part and is the expanded version of the fuzzy model. The proposed pattern classifier has the polynomial neural networks as the consequent part, instead of the general linear polynomial. PNNs are implemented by stacking the simple polynomials dynamically. To implement one layer of PNNs, the various types of simple polynomials are used so that PNNs have flexibility and versatility. Although the structural complexity of the implemented PNNs is high, the PNNs become a high order-multi input polynomial finally. To estimate the coefficients of a polynomial neuron, The weighted linear discriminant analysis. The output of fuzzy rule system with PNNs as the consequent part is the linear combination of the output of several PNNs. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

Design of Self-Organizing Networks with Competitive Fuzzy Polynomial Neuron (경쟁적 퍼지 다항식 뉴론을 가진 자기 구성 네트워크의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.800-802
    • /
    • 2000
  • In this paper, we propose the Self-Organizing Networks(SON) based on competitive Fuzzy Polynomial Neuron(FPN) for the optimal design of nonlinear process system. The SON architectures consist of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as FPN which includes either the simplified or regression Polynomial fuzzy inference rules. The proposed SON is a network resulting from the fusion of the Polynomial Neural Networks(PNN) and a fuzzy inference system. The conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as liner, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. Chaotic time series data used to evaluate the performance of our proposed model.

  • PDF

Design of Advanced Self-Organizing Fuzzy Polynomial Neural Networks Based on FPN by Evolutionary Algorithms (진화론적 알고리즘에 의한 퍼지 다항식 뉴론 기반 고급 자기구성 퍼지 다항식 뉴럴 네트워크 구조 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Ahn, Tea-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.322-324
    • /
    • 2005
  • In this paper, we introduce the advanced Self-Organizing Fuzzy Polynomial Neural Network based on optimized FPN by evolutionary algorithm and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed model gives rise to a structurally and parametrically optimized network through an optimal parameters design available within Fuzzy Polynomial Neuron(FPN) by means of GA. Through the consecutive process of such structural and parametric optimization, an optimized and flexible the proposed model is generated in a dynamic fashion. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

Design of hetero-hybridized feed-forward neural networks with information granules using evolutionary algorithm

  • Roh Seok-Beom;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.483-487
    • /
    • 2005
  • We introduce a new architecture of hetero-hybridized feed-forward neural networks composed of fuzzy set-based polynomial neural networks (FSPNN) and polynomial neural networks (PM) that are based on a genetically optimized multi-layer perceptron and develop their comprehensive design methodology involving mechanisms of genetic optimization and Information Granulation. The construction of Information Granulation based HFSPNN (IG-HFSPNN) exploits fundamental technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks, and genetic algorithms(GAs) and Information Granulation. The architecture of the resulting genetically optimized Information Granulation based HFSPNN (namely IG-gHFSPNN) results from a synergistic usage of the hybrid system generated by combining new fuzzy set based polynomial neurons (FPNs)-based Fuzzy Neural Networks(PM) with polynomial neurons (PNs)-based Polynomial Neural Networks(PM). The design of the conventional genetically optimized HFPNN exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being tuned by using Genetie Algorithms throughout the overall development process. However, the new proposed IG-HFSPNN adopts a new method called as Information Granulation to deal with Information Granules which are included in the real system, and a new type of fuzzy polynomial neuron called as fuzzy set based polynomial neuron. The performance of the IG-gHFPNN is quantified through experimentation.

  • PDF

Genetically Optimized Fuzzy Polynomial Neural Network and Its Application to Multi-variable Software Process

  • Lee In-Tae;Oh Sung-Kwun;Kim Hyun-Ki;Pedrycz Witold
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The conventional FPNN developed so far are based on mechanisms of self-organization and evolutionary optimization. The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed advanced genetic algorithms based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture (적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구)

  • Oh, Sung-Kwun;Kim, Dong-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

A New Modeling Approach to Fuzzy-Neural Networks Architecture (퍼지 뉴럴 네트워크 구조로의 새로운 모델링 연구)

  • Park, Ho-Sung;Oh, Sung-Kwun;Yoon, Yang-Woung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.664-674
    • /
    • 2001
  • In this paper, as a new category of fuzzy-neural networks architecture, we propose Fuzzy Polynomial Neural Networks (FPNN) and discuss a comprehensive design methodology related to its architecture. FPNN dwells on the ideas of fuzzy rule-based computing and neural networks. The FPNN architecture consists of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as Fuzzy Polynomial Neuron(FPN). The conclusion part of the rules, especially the regression polynomial, uses several types of high-order polynomials such as linear, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. It is worth stressing that the number of the layers and the nods in each layer of the FPNN are not predetermined, unlike in the case of the popular multilayer perceptron structure, but these are generated in a dynamic manner. With the aid of two representative time series process data, a detailed design procedure is discussed, and the stability is introduced as a measure of stability of the model for the comparative analysis of various architectures.

  • PDF