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Abstract

In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized
Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization,
especially Genetic Algorithms(GAs). The conventional FPNN developed so far are based on mechanisms ofself-organization and
evolutionary optimization. The design of the network exploits the extended Group Method of Data Handling(GMDH) with some
essential parameters of the network being provided by the designer and kept fixed throughout the overall development process.
This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a
structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in
conventional FPNNs. It is shown that the proposed advanced genetic algorithms based Fuzzy Polynomial Neural Networks is
more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS)
dataset to evaluate the performance of the proposed model.
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1. Introduction

It is expected that efficient modeling techniques should al-
low for a selection of pertinent variables and a formation of
highly representative datasets. Furthermore, the resulting mod-
els should be able to take advantage of the existing domain
knowledge (such as a prior experience of human observers or
operators) and augment it by available numeric data to form a
coherent data-knowledge modeling entity. Most recently, the
omnipresent trends in system modeling are concerned with a
broad range of techniques of computational intelligence(CI)
that dwell on the paradigm of fuzzy modeling, neuro-
computing, and genetic optimization[1, 2].The list of evident
landmarks in the area of fuzzy and neurofuzzy modeling [3,
4] is impressive. While the accomplishments are profound,
there are still a number of open issues regarding structure
problems of the models along with their comprehensive devel-
opment and testing.

As one of the representative and advanced design ap-
proaches comes a family of fuzzy polynomial neuron
(FPN)-based self organizing neural networks (abbreviated as
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FPNN or PNN and treated as a new category of neuro-fuzzy
networks)[5-7]. The design procedure of FPNNs exhibits some
tendency to produce overly complex networks as well as
comes with a repetitive computation load caused by the trial
and error method being a part of the development process.
The latter is in essence inherited from theoriginal Group
Method of Data handling (GMDH) [10] algorithm that re-
quires some repetitive parameter adjustment by the designer.

In this study, in addressingthe above problems with the
conventional SOPNN (especially, FPN-based PNN called
"FPNN" {6, 9, 15]) as well as the GMDH algorithm, we in-
troduce a new genetic design approach. Bearing this new de-
sign in mind, we will be referring to these networks as genet-
ic algorithms based FPNN ("GAs-based FPNN"for brief). The
determination of the optimal values of the parameters available
within an individual FPN (viz. the number of input variables,
the number of membership function (MFs), the order of the
polynomial, and a collection of the specific subset of input
variables) leads to a structurally and parametrically optimized
network. The network is directly contrasted with several exist-
ing neurofuzzy models reported in the literature.

To assess the performance of proposed model, we experi-
ment with well-know medical imaging system (MIS) [8] wide-
ly used in software engineering.
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2. The architecture and development of Fuzzy
Polynomial Neural Networks (FPNN)

In this section, we elaborate on the architecture and a de-
velopment process of the FPNN. This network emerges from
the genetically optimized multi-layer perceptron architecture
based on GA algorithms and the extended GMDH method.

2.1 FPNN Based on Fuzzy Polynomial Neurons(FPNs)
 We start with a fuzzy polynomial neuron(FPN). This neu-
ron, regarded as a generic type of the processing unit, dwells
on the concepts of fuzzy sets and neural networks. Fuzzy sets
realize a linguistic interface by linking the external world nu-
meric data with the processing unit. Neurocomputing manifests
in the form of a local polynomial unit realizing some non-
linear processing. The FPN encapsulates a family of nonlinear
"if-then" rules. FPN realizes a family of multiple-input sin-
gle-output rules. Each rule, refer again to Fig. 1, reads in the
form

if xp is A/ and xq is Bk then z is Pu(xi, x, ax) (1)

where anx is a vector of the parameters of the conclusion
part of the rule while Pu(x;, x;, ax) denotes the regression pol-
ynomial forming the consequence part of the fuzzy rule which
uses several types of high-order polynomials besides the con-
stant function forming the simplest version of the con-
sequence, refer to Table 1. The activation levels of the rules
contribute to the output of the FPN being computed as a
weighted average of the individual condition parts (functional
transformations) Px (note that the index of the rule, namely
"K" is a shorthand notation for the two indexes of fuzzy sets
used in the rule (1), that is K = (J, k)).

all nudes all rules _
2 B = z /‘KP;((xl’xj’ax) (2)

all_ries
z= Z My xi’xjsax)
x=1 k= k=)

In the above expression, we use an abbreviated notation to
describe an activation level of the "K"th rule to be in the
form

Znd layer or Higher

Fig. 1. A general topology of the FPN based FPNNalong with
the structure of the generic FPN module (F: fuzzy set-based

processing part, P: the polynomial form of mapping)

~ 4

IJ'K = allrulI:s (3)
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Based on the genetically optimized number of the nodes
(input variables) and the polynomial order, refer to Table 1,
we construct the optimized self-organizing network archi-
tectures of the FPNNs.

Table 1. Different forms of the regression polynomials
forming the consequence part of the fuzzy rules.

o. of input

Order of ! 2 3

the Polynomial
O0(Type 1) Constant
1(Type 2) Linear Bilinear Trilinear
2(Type 3) Biquadratic Triquadratic

Quadratic Modified Modified

AType 4) Biquadratic Triquadratic

2.2 Genetic Algorithms based FPNN

In order to enhance the learning of the FPNN and augment
its performance, we use genetic algorithms to obtain the struc-
turaloptimization of the network by optimally selecting such
parameters as the number of input variables(nodes), the order
of polynomial, and input variables within a FPN. Here, GAs
use serial method of binary type, roulette-wheel as the se-
lection operator, one-point crossover, and an invert operation
in the mutation operator{7].

In this study, for the optimization of the FPNN model, GA
usesthe serial method of binary type, roulette-wheel used in
the selection process, one-point crossover in the crossover op-
eration, and a binary inversion (complementation) operation in
the mutation operator. To retain the best individual and carry
it over to the next generation, we use elitist strategy. The
overall genetically-driven structural optimization process of
FPNN is shown in Fig. 2.

Ist stage 2nd stage

Ty A R U S - Al

fuzzy inference method I Genetic st Genetic 2nd

& fuzey identification design layer design layer
T Yoz || s o s

i La o
Stptied e sresios yer
Lz« _~—] :3 Generation: :>

Layer
@ Generation :>

P Tpe

;
E #:> L | | e

HiNH

cousequent purt ol foery

By

E : Entire inputs, S : Sclected FPNs, z,: Preferred outpats lo the ith stage(z=z,,, 23, ..., Zus)

Fig. 2. Overall genetically-driven structural optimization
process of FPNN
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3. The design procedure of genetically
optimized FPNN

We use FPNNs as the building blocks of the network. Each
neuron of the network realizes a polynomial type of partial
description(PD) of the mapping between input and output
variables. The input-output relation formed by the FPNN algo-
rithm can be described in the form

y=f(x1’x2""’xn) 4
The estimated output )A/reads as the following polynomial

F=I(x%,0%,)=6 +ch!xkl + zckmxklxkz + 2 CrranaXaXuaXes T
k1 kik2 k1k2k3
(5)

where ck s are its coefficients.

The framework of the design procedureof the Fuzzy
Polynomial Neural Networks (FPNN) based on genetically op-
timized multi-layer perceptron architecture comprises the fol-
lowing steps
[Step 1] Determine system’s input variables
[Step 2] Form training and testing data

The input-output data set (xi, yi)=(x1i, x2i, , xni, yi), i=l,
2, , N (with N being the total number of data points) is div-
ided into two parts, that is, a training and testing dataset.
[Step 3] specify initial design parameters

Here we decide upon the essential design parameters of the
FPNN structure.

a) The decision ofinitial information for fuzzy inference

method and fuzzy identification

- Fuzzy inference method

- MF type: Triangular or Gaussian-like MF

- No. of MFs per each input of a node (or FPN)
- Structure of the consequence part of fuzzy rules

b) The maximum number of input variables entering each

node in the corresponding layer.

c) The total number (W ) of nodes to be retained (selected)

at the next generation of the FPNN algorithm.
[Step 4] Decide FPN structure using genetic design

When it comes to the organization of the chromosome rep-
resenting (mapping) the structure of the FPNN, we divide the
chromosome to be used for genetic optimization into three
sub. The 1st sub-chromosome contains the number of input
variables, the 2nd sub-chromosome involves the order of the
polynomial of the node, the 3rd sub-chromosome (remaining
bits) contains input variables coming to the corresponding
node (FPN), and the 4th sub-chromosome contains the number
of membership functions per each input variable. All these el-
ements are optimized when running the GA.

Each sub-step of the genetic design of the three types of
the parameters available within the FPN is structured as fol-
lows:

[Step 4-1] Selection of the number of input variables (Ist
sub-chromosome)

[Step 4-2] Selection of the polynomial order of the con-
sequent part of fuzzy rules (2nd sub- chromosome)

[Step 4-3] Selection of input variables (3rd sub-chromosome)
[Step 4-4] Selection of the number of membership func-
tions(4th sub-chromosome)

[Step 5] Carry out fuzzy inference and coefficient parameters
estimation for fuzzy identification in the selected node (FPN)

In each fuzzy inference, we consider two types of member-
ship functions, namely triangular and Gaussian-like member-
ship functions.

The consequence -part can be expressed by linear, quadratic,
or modified quadratic polynomial equation as mentioned
previously.

Proceeding with each layer of FPNN, the designalternatives
available within a single FPN can be made with regard to the
selected input variables in the consequence part of fuzzy rules.
Following these criteria, we distinguish between the two fun-
damental types of the rules

The use of the regression polynomial inference method
gives rise to the expression

RUIf xis Ay, x, is A, then y, = f(x,,%,,,%x,)  (6)

A
The numeric output Y is determined in the same way as in

the previous approach that is

Sufmes)
=L—:zﬁiﬁ(xl7x2’.”’xk) @
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where, f;(®)is a regression polynomial function of the in-

put variables.

Here we consider a linear regression polynomial function of
the input variables. The consequence parameters are produced
by the standard least squares method
[Step 6] Select nodes (FPNs) with the best predictive capa-
bility and construct their corresponding layer

To evaluate the performance of FPNs (nodes) constructed
using the training dataset, the testing dataset is used. Based on
this performance index, we calculate the fitness function.

The fitness function reads as

F(fitness function) =

1
8
1+ EPI ®

where EPI denotes the performance index for the testing
data (or validation data). In this case, the model is obtained
by the training data and EPIis obtained from the testing data
(or validation data) of the FPNN model constructed by th
training data. ’

The outputs of the retained nodes (FPNs) serve as inputs to
the next layer of the network. There are two cases as to the
number of the retained FPNs, that is

(i) If W*<W, then the number of the nodes (FPNs) retained

for the next layer is equal to z. Here, W* denotes the num-

ber of the retained nodes in each layer that nodes with the

duplicated fitness values are moved.

(i) If W*>W, then for the next layer, the number of the

retained nodes (FPNs) is equal to W.
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[Step 7] Check the termination criterion

The termination condition that controls the growth of the
model consists of two components, that is the performance in-
dex and a size of the network (expressed in terms of the max-
imal number of the layers). As far as the performance index
is concerned (that reflects a numeric accuracy of the layers), a
termination is straightforward and comes in the form,

F,<F, ©

Where, F1 denotes a maximal fitness value occurring at the
current layer whereas F* stands for a maximal fitness value
that occurred at the previous layer.

In this study, we use two measures (performance indexes)
that is theMean Squared Error (MSE)

1 )
E(PI or EPI) =7v—2(y,, -9, (10)
p=1

where, yp is the p-th target output data and 7, stands for
the p-th actual output of the model for this specific data
point. N is training(PI) or testing(EPI) input-output data pairs
and E is an overall(global) performance index defined as a
sum of the errors for the N.
[Step 8] Determine new input variables for the next layer If
(9) has not been met, the model is expanded. The outputs of
the preserved nodes (zli, z2i, , zZWi) serves as new inputs to
the next layer (x1j, x2j, , xWj)(j=i+1). This is captured by
the expression

X1y S 21 Xo; T Zgppeees Xy T 2y

(1)

The FPNN algorithm is carried out by repeating steps 4-8.

4. Experimental studies

In this section, we illustrate the development of the
GAs-based FPNN and show its performance for well known
and widely used datasets in software engineering. That is
medical imaging sysem (MIS)[8] data.

We consider a medical imaging system (MIS) subset of 390
software modules written in Pascal and FORTRAN for
modeling. These modules consist of approximately 40,000 line
of code. To design an optimal model from the MIS, we study
11 system input variables such as LOC, CL, TChar, TComm,
MChar, DChar, N, NE, NF, V(G) and BW. The output varia-
ble of the model is the number of changes changes made to
the software module during its development. In the case of
the MIS data, the performance index is defined as the mean
squared error (MSE) as in (10)

Table 2 summarizes the list of parameters used in the ge-
netic optimization of the network. Fig. 3 depicts the perform-
ance index of each layer of GAs-based FPNN according to
the increase of maximal number of inputs to be selected. In
Fig. 3, A()- C() denote the optimal node numbers at each
layer of thenetwork, namely those with the best predictive
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performance.

Table 2. Summary of the parameters of the genetic

optimization

Parameters 1st~3rd

Maximum gen 300

Total population size 150

GA Selected population size 40

Crossover rate 0.65

Mutation rate 0.1
String length 3+3+30+5

Maximal no. of inputs to be
selected(Max)
polynomial Type(Type T) of the

1<1=<Max(2~4)

*< 4

FPNN consequent part of rules 1=T*=
. . Gaussian
Membership Function(MFs) type Triangular

No. of MFs per each input 2 or3

[ Maximal sumber of inputs (0 be selected _(Mas) | Maximal number of inputs to be selected  (Max) ]
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(a) Triangular MF
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(b) Gaussian-like MF
Fig. 3. Performance index of GAs-based FPNN with respect
to the increase of number of layers

Fig. 4 illustrates the detailed optimal topologies of
GAs-based FPNN for onelayer when using Max=3 and
Gaussian-like MF: the results of the network have been re-
ported as PI=25.804 and EPI=12.637. As shown in Fig 4,
the proposed network enables the architecture to be a structur-
ally more optimized and simplified network than the conven-
tional FPNN. In nodes (FPNs) of Fig. 4, 'FPNn' denotes the
nth FPN (node) of the corresponding layer, numeric values
with rectangle form before a node(nuron) mean number of
membership functions per each input variable, the number of
the left side denotes the number of nodes (inputs or FPNs)
coming to the corresponding node, and the number of the
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right side denotes the polynomial order of conclusion part of
fuzzy rules used in the corresponding node. Figs. 5-6 show
output comparison and identification errors for the optimal
network architecture visualized in Fig. 4.

LOC e
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Fig. 4. Optimal networks structure of GAs-based FPNN ( for
3 layers )
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Fig. 7. The optimization process quantified by the values of

the performance index

Table 3. Comparative analysis of the performance of the
network; considered are models reported in the literature

Model Sturcture Pi EPI
P Generic Basic 1
Simplified |~y Architocture 5 40.753 | 17.898
SONFN[I1)
. : Genric Basic 1
Linear Type Architecture 5 35.745 | 17.807
Max T]\;;f X T Layer | Pl | EPI
T 2 5% | 32195 | 18.462
2
FPNN[E2] G 1 5% 49.716 | 31.423
T 1 5® 32251 | 19.622
3
G 1 58 39.093 | 19.983
T 3 5" 27.406 | 16.641
2
G 1 5" 25.435 | 14.976
T 1 5 27.162 | 17.598
N(l?)l(ligl 3 th
G 1 5 25.804 | 12.637
T 4 5t 26.835 | 14.919
4
G 1 5% 30.690 | 15.390

o o @ =

Ak

0 9 [
Datz no. Data no.

(a) Training data (b) Testing data
Fig. 5. Original output and model output of Medical Imaging
System data(Max=3, Gaussian like MFs)
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Fig. 6. Errors curve of GAs-based FPNN(Max=3, Gaussian
: like MFs)

Fig. 7 illustrates the optimization process by visualizing the
values of the performance index obtained in successive gen-
erations of GA. It also shows the optimized network archi-
tecture when using the Gaussian-like membership functions(the
maximal number (Max) of inputs to be selected is set to 3
with the structure composed of 5 layers).

Table 3 summarizes a comparative analysis of the perform-
ance of the network with other models. PIs(EPIs) is defined
as the mean square errors (MSE) computed for the ex-
perimental data and the respective outputs of the network.

5. Concluding remarks

In this study, the GA-based design procedure of Fuzzy
Polynomial Neural Networks (FPNN) along with its architec-
tural considerations has been investigated. The GA-based de-
sign procedure applied at each stage (layer) of the FPNN
leads to the selection of the preferred nodes (or FPNs) with
optimal local characteristics (such as the number of input vari-
ables, the order of the consequent polynomial of fuzzy rules,
input variables, and the number of membership functions)
available within FPNN. These options contribute to the flexi-
bility of the resulting architecture of the network. The design
methodology emerges as a hybrid structuraloptimization (based
on GMDH method and genetic optimization) and parametric
learning being regarded as atwo phase design procedure. The
GMDH method is comprised of both a structural phase such
as a self-organizing and an evolutionary algorithm (rooted in
natural law of survival of the fittest), and the ensuing para-
metric phase of the Least Square Estimation (LSE)-based
learning.

The comprehensive  experimental studies involving
well-known multi-variable software process datasets quantify a
superb performance of the network in comparison to the exist-
ing fuzzy and neuro-fuzzy models. Most importantly, through
the proposed framework of genetic optimization we can effi-
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ciently search for the optimal network architecture (being both
structurally and parametrically optimized) and this design face-
tbecomes crucial in improving the performance of the resulting
model.
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