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Fuzzy and Polynomial Neuron Based Nove! Dynamic Perceptron Architecture
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Abstract - In this study, we introduce and
investigate a «class of dynamic perceptron
architectures, discuss a comprehensive design
methodology and carry cut a series of numeric
experiments. The proposed dynamic perceptron
architectures are called as Polynomial Neural
Networks(PNN). PNN is a flexible neural
architecture whose topology 1is developed
through learning. In particular, the number of
layers of the PNN is not fixed in advance but
is generated on the fly. In this sense, PNN is a
self-organizing network. PNN has two kinds of
networks, Polynomial Neuron(PN)-based and
Fuzzy Polynomial Neuron{FPN)-based
networks, according to a polynomial structure.
The essence of the design procedure of
PN-based Self-organizing Polynomial Neural
Networks{SOPNN) dwells on the Group Method
of Data Handling (GMDH)(1]. Each node of the
SOPNN exhibits a high level of flexibility and
realizes a polynomial type of mapping (linear,
quadratic, and cubic) between input and output
variables. FPN-based SOPNN dwells on the
ideas of fuzzy rule-based computing and neural
networks. Simulations involve a series of
synthetic as well as experimental data used
across various neurofuzzy systems. A detailed
comparative analysis is included as well.

1. Introduction

Recently, a lot of attention has been directed
to advanced techniques of system modeling.
Neural networks, fuzzy sets and evolutionary
computing have augmented a field of modeling
quite immensely, they have also gave rise to a
number of new methodological issues and
increased awareness about tradeoffs one has to
make in system modeling. The art of modeling
is to reconcile these two tendencies and find a
workable synergistic environment. In this
study, we introduce a new class of
Self-organizing Polynomial Neural Networks
(SOPNN), namely Polynomial Neuron(PN)
based SOPNN and Fuzzy Polynomial
Neuron(FPN) based SOPNN.

In a PN based SOPNN, this network comes
with a high level of flexibility as each node can
have a different number of input variables as
well as exploit a different order of the
polynomial (say, linear, quadratic. cubic, etc.).
In comparison to well-known neural networks
whose topologies are commonly prior to all

detailed (parametric) learning, the SOPNN
architecture is not fixed in advance but
becomes fully optimized. Especially, the number
of layers of the SOPNN architecture can be
modified with new layers added, if required.
FPN based SOPNN is a network resulting from
the fusion of the extended GMDH algorithm
and a fuzzy inference system. Each node of the
SOPNN, that is a fuzzy polynomial neuron
(FPN) operates as a compact fuzzy inference
system. By exploiting several types of
regression polynomials in the conclusion part of
the rules, the architecture of SOPNN can be
easily changed to adapt to system environment.

In this study, we provide with a general
taxonomy of the SOPNNs, discuss detailed
learning schemes and include detailed
experimental studies.

2. The architecture of fuzzy and
polynomial neuron based dynamic
perceptron

2.1 PN based SOPNN

We introduce two kinds of polynomial neuron
based SOPNN structures, namely the basic and
the modified SOPNN. In what follows, we
discuss their architectural details. More
specifically, the main features of these
architectures are as follows

(a) Basic PN based SOPNN structure - The

number of input variables of PDs is same in

every layer.

Case 1. The polynomial order of PDs is the
same in each layer of the network.

Case 2. The polynomial order of PDs in the 2™
layer or higher has a different or modified
type in comparison with the one of PDs in
the 1% layer.

(b) Modified PN based SOPNN structure - The
number of input variables of PDs varies
from layer to layer.

Case 1. The polynomial order of PDs is same in
every layer.

Case 2. The polynomial order of PDs in the 2™
layer or higher has a different or modified
type in comparison with the one of PDs in
the 1% layer.

2.2 FPN based SOPNN

The topology of the FPN based SOPNN implies
the ensuing learning mechanisms: in the
description below we indicate some of these
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learning issues that permeate the overall
architecture. First, the network is homogeneous
in the sense it is constructed with the use of
the FPNs. It is also heterogeneous in the sense
that FPNs can be very different and this
contributes to the generality of the
architecture. The network may contain a
number of hidden layers each of them of a
different size (number of nodes). The nodes
may have a different number of inputs and this
triggers a certain pattern of connectivity of the
network. The FPN itself promotes a number of
interesting design options, see Fig. 1. These
alternatives concern a choice of the membership
functions, the type of the conclusion
(consequence) part, and the associated order of
the polynomial realizing a conclusion part of
the rule.

1
Fuzzy Inference Method
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Regression potynamial

Fig. 1. The design alternatives available within a
single FPN
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Basic FPN based SOPNN and Modified FPN

based SOPNN are as follows. Moreover, for

each type of the topology we identify two cases.

(a) Basic FPN based SOPNN architecture- The

number of the input variables of the fuzzy

rules in the FPN node is kept the same in each
layer of the network.

Case 1. The polynomial order of the
consequence part of the fuzzy rules is same
in the nodes of every layer of the network

Case 2. The ©polynomial order of the
consequence part of the fuzzy rules in the
nodes of the second layer or higher is
different in comparison to the order of the
nonlinearity encountered in the nodes in
the first layer.

(b) Modified FPN based SOPNN architecture-

The number of the input variables of the fuzzy

rules in the FPN differs across the layers of

the network

Case 1. The order of the polynomial in the
conclusion part of the fuzzy rules is the
same in all the nodes of each layer

Case 2. The order of such polynomial in the
nodes of the 2" layer or higher is different
from the one occurring in the rules located
in the 1lst layer.

2.2.1 The fuzzy polynomial neuron (FPN)

As shown in Fig. 2, the FPN consists of two
basic functional modules. The first one, labeled
by F, is a collection of fuzzy sets that form an
interface between the input numeric variables
and the processing part realized by the neuron.
In this figure, X4 and x, denote input variables.

The second module (denoted here by P) is
about the function based nonlinear
(polynomial) processing. This nonlinear
processing involves some input variables (xi and
X;). Quite commonly, we will be wusing a
polynomial form of the nonlinearity, hence the
name of the fuzzy polynomial processing unit.

5

FPN

Fig. 2. A general topology of the generic FPN module: note
its fuzzy set-based processing part (the module denoted by
F) and the polynomial form of mapping (P)

3. The algorithm of the self-organizing
polynomial neural networks

The SOPNN comes a highly  versatile
architecture both in the flexibility of the
individual nodes as well as the
interconnectivity between the nodes and

organization of the layers. Overall, the
framework of the design procedure of the
SOPNN comes as a sequence of the following
steps
[Step 1] Determine systems input variables.
(Step 2] Using available experimental data,
form a training and testing data set.
{Step 3) Choose a structure of the SOPNN.
(Step 4] Determine the number of input
variables and the order of the polynomial.
» The number of input variables and the
order of the polynomial in the PN based
SOPNN
» The number of input variables and the
polynomial order of the consequence part of
the fuzzy rules in the FPN based SOPNN
(Step 5] Select nodes with the best predictive
capabilities.
(Step 6] Check the stopping criterion.
(Step 7) Determine new input variables for the
next layer.

4. Simulation studies

In this section, we illustrate the development
of the SOPNN and show its performance for a
number of well-known and widely used
datasets. The first one is a time series of gas
furnace (Box-Jenkins data) which was studied
previously in (2-7). The delayed terms of
methane gas flow rate, u(t) and carbon dioxide
density, y{t) are used as system input
variables. And as output variable, y(t) is used.
The number of system inputs(SI), inputs, and
output used to design an optimal model from
gas furnace process data are
u(t - 2),u(t = 1), Wt = 2),y(t = 1) : 1)

The experiments were completed for four
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fundamental architectures of the SOPNNs and
the results are shown in a series of figures.

4.1 PN based SOPNN

it

Fig. 3. Output comparisons, identification errors, and performance
index of the basic SOPNN in Case 1(3 inputs ; Type 1)

Fig. 4. Output comparisons, identification errors, and performance
index of the basic SOPNN in Case 2(3 inputs ; 1st laver: Type 3,
2nd layer or higher: Type 1)

3o

Fig. 5. Output comparisons, identification errors, and performance
index of the modified SOPNN in Case 1{ist layer: 2 inputs , 2nd
layer or higher: 3 inputs ; Type 2}
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Fig. 6. Output comparisons, identification errors, and performance
index of the modified SOPNN in Case 2(Ist layer: 2 inputs, Type 1,
2nd layer or higher: 3 inputs, Type 2)

4.2 FPN based SOPNN

Fig. 7. Output comparisons, identification errors, and performance
index of the basic SOPNN in Case 1(2 inputs : Type 2, Gaussian
MF)

Fig. 8 Output comparisons, identification errors, and performance
index of the basic SOPNN in Case 2(2 inputs ; 1st layer: Type 2,
2nd layer or higher: Type 4, Gaussian MF)
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Fig. 9. Output comparisons, identification errors, and performance
index of the modified SOPNN in Case 1{lst layer: 2 inputs , 2nd
layer or higher: 3 inputs ; Type 1, tdangular MF)
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Fig. 10. Output comparisons, identification errors, and performance
index of the modified SOPNN in Case 2(Ist layer: 2 inputs, Type 4,
2nd layer or higher: 3 inputs, Type 1, tnangular MF}

Table 1 provides a comparison of the SOPNN
architectures with other models being already
proposed in the literature.

Table 1. Performance of the SOPNN for different structures
5 R : E;

2) 0.355
(3 0.320
(4} 0.123 | 0.020 { 0.271
Basic Casel | 0.067 | 0.017 :0.148
PN Case? | 0.064 | 0.017 (0.147

Casel | 0.045 | 0.014 :0.102

based | \fodified

Our Case2 | 0.044 | 0.015 10.110
model | Casel | 0.049 | 0.016 0.116
FPN | Buic [N ce210.047 | 0.016 10.128
057 | 0.016 10.133

based Modified Casel | 0.0

Case2 | 0.059 | 0.018 {0.131

5. Concluding remarks
In this study, we introduced a class of
self-organizing polynomial neural networks,
discussed a diversity of their topologies, came
up with a detailed design procedure, and used
these networks to nonlinear system modeling.
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