• Title/Summary/Keyword: Polynomial multiplication

Search Result 91, Processing Time 0.025 seconds

A Method for Distinguishing the Two Candidate Elliptic Curves in the Complex Multiplication Method

  • Nogami, Yasuyuki;Obara, Mayumi;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2006
  • In this paper, we particularly deal with no $F_p$-rational two-torsion elliptic curves, where $F_p$ is the prime field of the characteristic p. First we introduce a shift product-based polynomial transform. Then, we show that the parities of (#E - 1)/2 and (#E' - 1)/2 are reciprocal to each other, where #E and #E' are the orders of the two candidate curves obtained at the last step of complex multiplication (CM)-based algorithm. Based on this property, we propose a method to check the parity by using the shift product-based polynomial transform. For a 160 bits prime number as the characteristic, the proposed method carries out the parity check 25 or more times faster than the conventional checking method when 4 divides the characteristic minus 1. Finally, this paper shows that the proposed method can make CM-based algorithm that looks up a table of precomputed class polynomials more than 10 percent faster.

  • PDF

A Polynomial-Time Algorithm for Breaking the McEliece's Public-Key Cryptosystem (McEliece 공개키 암호체계의 암호해독을 위한 Polynomial-Time 알고리즘)

  • Park, Chang-Seop-
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1991.11a
    • /
    • pp.40-48
    • /
    • 1991
  • McEliece 공개키 암호체계에 대한 새로운 암호해독적 공격이 제시되어진다. 기존의 암호해독 algorithm이 exponential-time의 complexity를 가지는 반면, 본고에서 제시되어지는 algorithm은 polynomial-time의 complexity를 가진다. 모든 linear codes에는 systematic generator matrix가 존재한다는 사실이 본 연구의 동기가 된다. Public generator matrix로부터, 암호해독에 사용되어질 수 있는 새로운 trapdoor generator matrix가 Gauss-Jordan Elimination의 역할을 하는 일련의 transformation matrix multiplication을 통해 도출되어진다. 제시되어지는 algorithm의 계산상의 complexity는 주로 systematic trapdoor generator matrix를 도출하기 위해 사용되는 binary matrix multiplication에 기인한다. Systematic generator matrix로부터 쉽게 도출되어지는 parity-check matrix를 통해서 인위적 오류의 수정을 위한 Decoding이 이루어진다.

  • PDF

Design of High-Speed Parallel Multiplier over Finite Field $GF(2^m)$ (유한체 $GF(2^m)$상의 고속 병렬 승산기의 설계)

  • Seong Hyeon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.36-43
    • /
    • 2006
  • In this paper we present a new high-speed parallel multiplier for Performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the MOD operation part to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of MOD operation part have two AND gates and two XOR gates. Using these MOD operation parts, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the MOD operation parts with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI. Also, since this circuit has a low propagation delay time generated by the gates during operating process because of not use the memory elements in the inside of multiplier circuit, this multiplier circuit realizes a high-speed operation.

Fast GF(2m) Multiplier Architecture Based on Common Factor Post-Processing Method (공통인수 후처리 방식에 기반한 고속 유한체 곱셈기)

  • 문상국
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1188-1193
    • /
    • 2004
  • So far, there have been grossly 3 types of studies on GF(2m) multiplier architecture, such as serial multiplication, array multiplication, and hybrid multiplication. Serial multiplication method was first suggested by Mastrovito (1), to be known as the basic CF(2m) multiplication architecture, and this method was adopted in the array multiplier (2), consuming m times as much resource in parallel to extract m times of speed. In 1999, Paar studied further to get the benefit of both architecture, presenting the hybrid multiplication architecture (3). However, the hybrid architecture has defect that only complex ordo. of finite field should be used. In this paper, we propose a novel approach on developing serial multiplier architecture based on Mastrovito's, by modifying the numerical formula of the polynomial-basis serial multiplication. The proposed multiplier architecture was described and implemented in HDL so that the novel architecture was simulated and verified in the level of hardware as well as software. The implemented GF(2m) multiplier shows t times as fast as the traditional one, if we modularized the numerical expression by t number of parts.

Design of Elliptic Curve Cryptographic Coprocessor over binary fields for the IC card (IC 카드를 위한 polynomial 기반의 타원곡선 암호시스템 연산기 설계)

  • 최용제;김호원;김무섭;박영수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.305-308
    • /
    • 2001
  • This paper describes the design of elliptic curve cryptographic (ECC) coprocessor over binary fields for the If card. This coprocessor is implemented by the shift-and-add algorithm for the field multiplication algorithm. And the modified almost inverse algorithm(MAIA) is selected for the inverse multiplication algorithm. These two algorithms is merged to minimize the hardware size. Scalar multiplication is performed by the binary Non Adjacent Format(NAF) method. The ECC we have implemented is defined over the field GF(2$^{163}$), which is a SEC-2 recommendation[7]..

  • PDF

Resource and Delay Efficient Polynomial Multiplier over Finite Fields GF (2m) (유한체상의 자원과 시간에 효율적인 다항식 곱셈기)

  • Lee, Keonjik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Many cryptographic and error control coding algorithms rely on finite field GF(2m) arithmetic. Hardware implementation of these algorithms needs an efficient realization of finite field arithmetic operations. Finite field multiplication is complicated among the basic operations, and it is employed in field exponentiation and division operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a low area and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first multiplication and two-level parallel computing scheme are considered to improve the cell delay, latency, and area-time (AT) complexity. The proposed method has the features of regularity, modularity, and unidirectional data flow and offers a considerable improvement in AT complexity compared with related multipliers. The proposed multiplier can be used as a kernel circuit for exponentiation/division and multiplication.

Efficient Polynomial Multiplication in Extension Field GF($p^n$) (확장체 GF($p^n$)에서 효율적인 다항식 곱셈 방법)

  • Chang Namsu;Kim Chang Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.23-30
    • /
    • 2005
  • In the construction of an extension field, there is a connection between the polynomial multiplication method and the degree of polynomial. The existing methods, KO and MSK methods, efficiently reduce the complexity of coefficient-multiplication. However, when we construct the multiplication of an extension field using KO and MSK methods, the polynomials are padded with necessary number of zero coefficients in general. In this paper, we propose basic properties of KO and MSK methods and algorithm that can reduce coefficient-multiplications. The proposed algorithm is more reducible than the original KO and MSK methods. This characteristic makes the employment of this multiplier particularly suitable for applications characterized by specific space constrains, such as those based on smart cards, token hardware, mobile phone or other devices.

Low Latency Systolic Multiplier over GF(2m) Using Irreducible AOP (기약 AOP를 이용한 GF(2m)상의 낮은 지연시간의 시스톨릭 곱셈기)

  • Kim, Kee-Won;Han, Seung-Chul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.227-233
    • /
    • 2016
  • Efficient finite field arithmetic is essential for fast implementation of error correcting codes and cryptographic applications. Among the arithmetic operations over finite fields, the multiplication is one of the basic arithmetic operations. Therefore an efficient design of a finite field multiplier is required. In this paper, two new bit-parallel systolic multipliers for $GF(2^m)$ fields defined by AOP(all-one polynomial) have proposed. The proposed multipliers have a little bit greater space complexity but save at least 22% area complexity and 13% area-time (AT) complexity as compared to the existing multipliers using AOP. As compared to related works, we have shown that our multipliers have lower area-time complexity, cell delay, and latency. So, we expect that our multipliers are well suited to VLSI implementation.

Low-Power and Low-Hardware Bit-Parallel Polynomial Basis Systolic Multiplier over GF(2m) for Irreducible Polynomials

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.570-581
    • /
    • 2017
  • Multiplication in finite fields is used in many applications, especially in cryptography. It is a basic and the most computationally intensive operation from among all such operations. Several systolic multipliers are proposed in the literature that offer low hardware complexity or high speed. In this paper, a bit-parallel polynomial basis systolic multiplier for generic irreducible polynomials is proposed based on a modified interleaved multiplication method. The hardware complexity and delay of the proposed multiplier are estimated, and a comparison with the corresponding multipliers available in the literature is presented. Of the corresponding multipliers, the proposed multiplier achieves a reduction in the hardware complexity of up to 20% when compared to the best multiplier for m = 163. The synthesis results of application-specific integrated circuit and field-programmable gate array implementations of the proposed multiplier are also presented. From the synthesis results, it is inferred that the proposed multiplier achieves low power consumption and low area complexitywhen compared to the best of the corresponding multipliers.

Modular Multiplier based on Cellular Automata Over $GF(2^m)$ (셀룰라 오토마타를 이용한 $GF(2^m)$ 상의 곱셈기)

  • 이형목;김현성;전준철;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.112-117
    • /
    • 2004
  • In this paper, we propose a suitable multiplication architecture for cellular automata in a finite field $GF(2^m)$. Proposed least significant bit first multiplier is based on irreducible all one Polynomial, and has a latency of (m+1) and a critical path of $ 1-D_{AND}+1-D{XOR}$.Specially it is efficient for implementing VLSI architecture and has potential for use as a basic architecture for division, exponentiation and inverses since it is a parallel structure with regularity and modularity. Moreover our architecture can be used as a basic architecture for well-known public-key information service in $GF(2^m)$ such as Diffie-Hellman key exchange protocol, Digital Signature Algorithm and ElGamal cryptosystem.