Efficient Polynomial Multiplication in Extension Field GF($p^n$)

확장체 GF($p^n$)에서 효율적인 다항식 곱셈 방법

  • Chang Namsu (Center for Information and Security Technologies(CIST), Korea Univ.) ;
  • Kim Chang Han (Dept. of Information and Security Semyung Univ.)
  • 장남수 (고려대학교 정보보호대학원) ;
  • 김창한 (세명대학교 정보보호학과)
  • Published : 2005.05.01

Abstract

In the construction of an extension field, there is a connection between the polynomial multiplication method and the degree of polynomial. The existing methods, KO and MSK methods, efficiently reduce the complexity of coefficient-multiplication. However, when we construct the multiplication of an extension field using KO and MSK methods, the polynomials are padded with necessary number of zero coefficients in general. In this paper, we propose basic properties of KO and MSK methods and algorithm that can reduce coefficient-multiplications. The proposed algorithm is more reducible than the original KO and MSK methods. This characteristic makes the employment of this multiplier particularly suitable for applications characterized by specific space constrains, such as those based on smart cards, token hardware, mobile phone or other devices.

확장체 GF($p^n$)의 구성에서 차수와 다항식 곱셈 방법은 밀접한 관련을 가진다. 기존의 다항식 곱셈 방법인 KO] 및 MSK 방법은 효율적으로 계수-곱셈 연산량을 줄인다. 그러나 이들 방법을 이용하여 확장체 곱셈을 구성할 경우, 일반적으로 해당하는 분할 방법의 배수가 되도록 패딩(Padding)하여 구성하지만 이에 대한 기준이 모호하며 계수-곱셈의 연산량이 최소가 되도록 패딩하는 방법 또한 제안되지 않았다. 본 논문에서는 확장체 곱셈을 효율적으로 구성할 수 있는 기본적인 성질과 계수-곱셈의 연산량이 최소가 되는 다항식 차수를 찾는 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘을 적용하면 기존의 방법을 그대로 적용하여 구성할 때 보다 확장체의 차수가 증가할수록 더 많은 계수-곱셈 연산량을 줄일 수 있다. 따라서 본 논문의 결과는 스마트 카드 등 작은 공간 복잡도를 요구하는 병렬처리 곱셈기에 효율적으로 적용될 수 있다.

Keywords

References

  1. 장남수, 한동국, 정석원, 김창한, '유한체 GF(2n)에서 낮은 공간 복잡도를 가지는 새로운 다중 분할 카라슈바 방법의 병렬처리 곱셈기', 대한전자공학회논문지(SC), 41. 1, pp.33-40, 2004
  2. ANSI X9.62, 'Public key cryptography for the financial services industry : The Elliptic Curve Digital Signature Algorithm (ECDSA)', (available from the ANSI X9 catalog), 1999
  3. H. Cohen, 'A Course in Computational Algebric Number Theory', Springer-Verlag, Berlin, Heidelberg, 1993
  4. G. Drolet, 'A New Representation of Elements of Finite Fields GF($2^m$) Yielding Small Complexity Arithmetic circuit}, IEEE Trans. on Computers, vol 47, 1998, 353-356 https://doi.org/10.1109/12.713313
  5. M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blumel, 'A Reconfigurable System on Chip Implementation for Elliptic Curve Ctryptography over GF($2^n$)', In Work shop on Cryptographic Hardware and Embedded Systems (CHES'02), LNCS2523, (2002), 381-399
  6. IEEE 1363, 'Standard Specifications For Public Key Cryptography', http://grouper.ieee.org/groups/1363/,2000. 381-399
  7. K.O.Geddes, S.R. Czapor, and G. Labahn, 'Algorithms for Computer Algebra, Kluwer Academic Publishers', 1992
  8. C. K Koc, and B. Sunar, 'Low- Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields', Proceeding of 1998 IEEE International Symposium on Information Theory, MIT, Cambridge, Massachusetts, August 16-21, 1998 https://doi.org/10.1109/ISIT.1998.708899
  9. N. Koblitz, 'Elliptic Curve Ctyptosystems', Mathematics of Computation, vol. 48, 1987, 203-209 https://doi.org/10.2307/2007884
  10. M. Leone, 'A New Low Complexity Parallel Multiplier for a Class of Finite Fields', In Work shop on Cryptographic Hardware and Embedded Systems (CHES'01), LNCS2162, (2001), 160-170
  11. V. Miller, 'Use of Elliptic Curve Cryptosys tems', Advances in Cryptology, CRYPTO'85, LNCS 218, H. C. Williams,Ed., Springer-Verlag, 1986, 417-426
  12. C. Paar, 'Efficient VLSI Architecture for BitParallel Computation in Galois Fields', PhD thesis, (Engl. transl.) , Institute for Experimental Mathematics, University of Essen, Essen, Germany, June 1994
  13. C. Paar, 'Low complexity parallel Multipliers for Galois fields GF((2n)4) based on special types of primitive polynomials, In 1994 IEEE International Symposium on Information Theory, Trondheim, Norway, June 27- July 1 1994 https://doi.org/10.1109/ISIT.1994.394850
  14. Paar C., 'A new architecture for a parallel finite fields multiplier with Low Complexity Based on Composite Fields', IEEE Trans. on Computers, vol45, no. 7, July 1996, 846-861 https://doi.org/10.1109/12.508323
  15. C. Paar, P. Fleischmann, P. Roelse, 'Efficient Multiplier Architectures for Galois Fields $GF((2^n)^4)$, IEEE Transactions on Computers, February 1998, vol. 47, no. 2, 162-170 https://doi.org/10.1109/12.663762
  16. T. Kobayashi, K. Aoki, and F. Hoshino, 'OEF Using a Successive Extension,' Proc. The 2000 Symposium on Cryptography and Information Security, no.B02(2000)