References
- 장남수, 한동국, 정석원, 김창한, '유한체 GF(2n)에서 낮은 공간 복잡도를 가지는 새로운 다중 분할 카라슈바 방법의 병렬처리 곱셈기', 대한전자공학회논문지(SC), 41. 1, pp.33-40, 2004
- ANSI X9.62, 'Public key cryptography for the financial services industry : The Elliptic Curve Digital Signature Algorithm (ECDSA)', (available from the ANSI X9 catalog), 1999
- H. Cohen, 'A Course in Computational Algebric Number Theory', Springer-Verlag, Berlin, Heidelberg, 1993
-
G. Drolet, 'A New Representation of Elements of Finite Fields GF(
$2^m$ ) Yielding Small Complexity Arithmetic circuit}, IEEE Trans. on Computers, vol 47, 1998, 353-356 https://doi.org/10.1109/12.713313 -
M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blumel, 'A Reconfigurable System on Chip Implementation for Elliptic Curve Ctryptography over GF(
$2^n$ )', In Work shop on Cryptographic Hardware and Embedded Systems (CHES'02), LNCS2523, (2002), 381-399 - IEEE 1363, 'Standard Specifications For Public Key Cryptography', http://grouper.ieee.org/groups/1363/,2000. 381-399
- K.O.Geddes, S.R. Czapor, and G. Labahn, 'Algorithms for Computer Algebra, Kluwer Academic Publishers', 1992
- C. K Koc, and B. Sunar, 'Low- Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields', Proceeding of 1998 IEEE International Symposium on Information Theory, MIT, Cambridge, Massachusetts, August 16-21, 1998 https://doi.org/10.1109/ISIT.1998.708899
- N. Koblitz, 'Elliptic Curve Ctyptosystems', Mathematics of Computation, vol. 48, 1987, 203-209 https://doi.org/10.2307/2007884
- M. Leone, 'A New Low Complexity Parallel Multiplier for a Class of Finite Fields', In Work shop on Cryptographic Hardware and Embedded Systems (CHES'01), LNCS2162, (2001), 160-170
- V. Miller, 'Use of Elliptic Curve Cryptosys tems', Advances in Cryptology, CRYPTO'85, LNCS 218, H. C. Williams,Ed., Springer-Verlag, 1986, 417-426
- C. Paar, 'Efficient VLSI Architecture for BitParallel Computation in Galois Fields', PhD thesis, (Engl. transl.) , Institute for Experimental Mathematics, University of Essen, Essen, Germany, June 1994
- C. Paar, 'Low complexity parallel Multipliers for Galois fields GF((2n)4) based on special types of primitive polynomials, In 1994 IEEE International Symposium on Information Theory, Trondheim, Norway, June 27- July 1 1994 https://doi.org/10.1109/ISIT.1994.394850
- Paar C., 'A new architecture for a parallel finite fields multiplier with Low Complexity Based on Composite Fields', IEEE Trans. on Computers, vol45, no. 7, July 1996, 846-861 https://doi.org/10.1109/12.508323
-
C. Paar, P. Fleischmann, P. Roelse, 'Efficient Multiplier Architectures for Galois Fields
$GF((2^n)^4)$ , IEEE Transactions on Computers, February 1998, vol. 47, no. 2, 162-170 https://doi.org/10.1109/12.663762 - T. Kobayashi, K. Aoki, and F. Hoshino, 'OEF Using a Successive Extension,' Proc. The 2000 Symposium on Cryptography and Information Security, no.B02(2000)