Design for Self-Repair Systm by Embeded Self-Detection Circuit

자가검출회로 내장의 자가치유시스템 설계

  • 서정일 (충북대학교, 반도체공학과) ;
  • 성낙훈 (LG 필립스LCD(주)) ;
  • 오택진 ((주)픽셀플러스) ;
  • 양현모 (충북대학교, 반도체공학과) ;
  • 최호용 (충북대학교, 전자전기컴퓨터공학부)
  • Published : 2005.05.01

Abstract

This paper proposes an efficient structure which is able to perform self-detection and self-repair for faults in a digital system by imitating the structure of living beings. The self-repair system is composed of artificial cells, which have homogeneous structures in the two-dimension, and spare cells. An artificial cell is composed of a logic block based on multiplexers, and a genome block, which controls the logic block. The cell is designed using DCVSL (differential cascode voltage switch logic) structure to self-detect faults. If a fault occurs in an artificial cell, it is self-detected by the DCVSL. Then the artificial cells which belong to the column are disabled and reconfigured using both neighbour cells and spare cells to be repaired. A self-repairable 2-bit up/down counter has been fabricated using Hynix $0.35{\mu}m$ technology with $1.14{\times}0.99mm^2$ core area and verified through the circuit simulation and chip test.

본 논문에서는 생명체의 구조를 모방하여, 디지털시스템에서 자가검출과 자가치유가 가능한 구조를 제안한다. 자가치유시스템은 인공 셀의 2차 배열과 여분의 인공 셀로 구성된다. 인공 셀은 멀티플렉서를 기본으로 한 로직블록(logic block)과 로직블록을 제어하기 위한 게놈블록(genome block)으로 구성된다. 인공 셀은 자가검출이 가능하도록 DCVSL (differential cascode voltage switch logic)구조로 설계된다. 만약 인공 셀에서 고장이 발생하면, 자가 검출되고 고장 난 인공 셀이 속한 열은 bypass기능만을 가지고 치유를 위해, 여분 셀과 이웃 셀을 이용하여 시스템을 재구성한다. 하이닉스 $0.35{\mu}m$공정을 이용해 $1.14{\times}0.99mm^2$의 코어면적을 가지는 2비트 업다운카운터를 제작하였고 회로시뮬레이션과 칩 테스트를 통해 검증하였다.

Keywords

References

  1. V. Shen and F. Shen, 'Requirements specification and analysis of fault tolerant digital systems,' IEEE Trans. on Man and Cybernetics, Part A, vol. 32, no. 1, pp. 149-159, Jan. 2002 https://doi.org/10.1109/3468.995536
  2. H. Fahmy, S. Ghoneim and A. Pacha, 'Fault tolerant communication with partitioned dimension-order routers with complex faults,' in Proc. of 15th International Conference on Information Networking, pp. 361-366, Jan. 2001 https://doi.org/10.1109/ICOIN.2001.905452
  3. M. Yen, W. Fuchs, and J. Abraham, 'Designing for concurrent error detection in VLSI: Application to a microprogram control unit,' IEEE J. Solid State Circuits, vol. 22, no. 4, pp. 595-605, Apr. 1987 https://doi.org/10.1109/JSSC.1987.1052777
  4. D. Bradley and A. Tyrrell. 'Immunotronics: Novel finite state machine architectures with built-in self-test using self-nonself differentiation,' IEEE Trans. on Evolutionary Computation, vol. 6, no.3, pp. 222-238, June 2002 https://doi.org/10.1109/TEVC.2002.1011538
  5. D. Bradley and A. Tyrrell. 'Hardware Immune System for Benchmark State Machine Error Detection,' IEEE Trans. on Evolutionary Computation, vol. 1, pp.813-818, May 2002 https://doi.org/10.1109/CEC.2002.1007030
  6. C. Ortega-Sanchez and A. Tyrell, 'Design of a basic cell to construct embryonic array,' in Proc. of IEEE Computers and Digital Techniques, vol. 145, no. 3, pp. 242-248, May 1998 https://doi.org/10.1049/ip-cdt:19981940
  7. D. Mange, 'Embryonics: A new methodology for designing FPGA with self-repair and self-replicationing,' IEEE Trans. on VLSI Systems, vol. 6, no 3, pp. 387-399, Sept. 1998 https://doi.org/10.1109/92.711310
  8. L. Prodan, G. Tempesti, D. Mange, and A. Stauffer, 'Embryonics: Artificial cells driven by artificial DNA,' in Proc. of 4th International Conference ICES, Lecture Notes in Computer Science, pp. 100-111, May 2001 https://doi.org/10.1007/3-540-45443-8_9
  9. M. Rabaey, Digital Integrated Circuits, Prentice-Hall Inc., pp. 522-543, 1996
  10. B. Yang and Y. Chen, 'Space and Time Efficient BDD Construction via Working Set controller,' in Proc. of ASPDAC '98, pp. 423-432, Feb. 1998 https://doi.org/10.1109/ASPDAC.1998.669515