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I, Introduction,

Based on the idea that the general decoding problem for a linear code is
NP-complete[1], McEliece[2] has introduced a public-key cryptosystem using the
error-correcting codes, especially a binary irreducible Goppa code. His main
idea is to transform the original generator matrix of a Goppa code into the one
from which the corresponding parity-check matrix for decoding can’t be obtained
" without knowing the matrices used for the transformation. Several cryptanalytic
attacks against the McEliece's public-key cryptosystem have been proposed. Adams
and Meijer[3] have calculated the optimum value for the number of errors to be
introduced in the codeword for the purpose of maximizing the work factor, and
Lee and Brickell[4] have lowered the work factor by a systematic method of
checking the validity of the cryptanalyzed message.

Their ideas are based on repeatedly selecting the random bits from the
ciphertext in the hope that none of the selected bits are affected by errors.
The approach taken by them results in a high work factor due to the exhastive
search for the random bits which are not in error.

In this paper, a polynomial-time algorithm for breaking the McEliece's
system is presented, which is based on the existence of a new trapdoor generator
matrix obtained from the public generator matrix. In chapter two, a description
of the McEliece’s cryptosystem is given, together with the conventional
cryptanalytic attacks against it. A new cryptanalytic algorithm for breaking it,
which runs in polynomial time, is presented in chapter three. Finally,

conclusions are drawn,

11, The WcEliece's Public-Key Cryptosysten,

II.1 System Description.

Given an irreducible polynomial of degree t over GF(2m), the user
generates a t-error-correcting Goppa code of length n = 2m and dimension k 2 n -
t-m, then produces the associated kxn generator matrix G. A kxk nonsingular
matrix S and a nxn permutation matrix P are used to scramble the generator
matrix G so that G’= S-G-P, The public key is G’, while the private keys are S,
G, and P,
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Encryption : Given a k-bit plaintext message m, the corresponding ciphertext c
is calculated as follows:

c=mG +e, (1)
where e is an artificial error vector of length n and weight t.
Decryption : Compute the syndrome vector

s = c.P-1.HT = m-S-G-HT + e-P-1.HT = g.P-1.HT, (2)
where HT is a transpose of the parity-check matrix corresponding to G, and use a
decoding algorithm such as Patterson algorithm to identify and remove e-P-1, As

a result, m-S can be obtained. The sender’s plaintext message m is then easily
found by m-S-S-1,

I1.2 Conventional Cryptanalytic Attacks.

The typical attack is to repeatedly select k bits at random from the
ciphertext ¢ to form ck(= m-Gk’+ ek) in the hope that any of the selected k bits
are not in error, namely ex = 0. If there is no error in them, ck-[Gk']-! is
equal to m, where Gk’ is the kxk submatrix obtained by choosing k columns of G’
according to the same selection of ck. The probability that there is no error in
randomly selected k bits among n bits with t errors is P =

(%t

(o)

The total work factor for this attack is W = k3.P-!, assuming the matrix

(3)

inversion for [Gk’]-1 requires k3 steps,

Adams and Meijer showed that the optimum value of t that maximizes W for
n = 1024 is 37, which results in W = 284.1 Lee and Brickell suggested the
systematic method of checking whether the obtained ck-[Gk’]1-1 is really m. If ck
-[6k’]"! is not the true m, then m-G’ + ck-[Gk’]"1-G’ must have a Hamming weight
of at least 2t. Hence, if ¢ + ck-[Gk’]-1-G’ has a Hamming weight of less than or
equal to t, it is claimed that ck'[Gk’]-! = m. Based on this idea, they
described an efficient algorithm to cryptanalyze the McEliece's cryptosystem by
allowing a very small number of errors in the selected ck. The algorithm
requires a work factor of W = 273.4 for n = 1024,

The McEliece’s public-key cryptosystem is still secure against the

attacks described above, Now, we present a cryptanalytic algorithm to break it,
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111, A New Cryptanalytic Attack.

111.1 Main ldea,

The attack to be discussed is motivated by the existence of a systematic
generator matrix of a code. If G'(= S-G-P) can be transformed into G’ in a
systematic form, namely in a row-echelon form, the corresponding systematic
parity-check matrix H” can be easily constructed from a relationship between G”
= [ Ixxk ! A} and H“ = [ AT | I(n-k)x(n-k) ], where A is a kx(n-k) binary
matrix and AT is its transpose,.

The transformation of G° into G” can be carried out by the Gauss-Jordan
elimination. That is, several elementary row operations are applied to G'. The
key point of this cryptanalytic approach is to make a connection between G’ and
G’ through a series of transformation matrices. The effect of applying
elementary row operations to G' can be also obtained by premultiplying G' by a
series of transformation matrices as follows:

Dk -Dk-1 + - + Di-G" =G", (4)
where Di, 1 < i < k, is binary kxk tranformation matrix whose function is to

reduce G’ to a systematic generator matrix G”. The transformation matrices can

be represented as a single kxk matrix D (= Dk-Dxk-1 - - - Di). If D is
invertible, then "

G =D1.G". (5)
The equation (1) can be rewritten as

c=mnD1.G" +e (6)

From G”, the corresponding parity-check matrix H” can be easily obtained. G”
generates a linear code with the same code rate and minimum distance as the code
generated by G. The intercepted ciphertext c can be cryptanalyzed as follows:

c-(H*)T = m-D"1-G"-(H")T + e-(H*)T = e-(H")T, (7)
because G”-(H”)T = 0. Based on the syndrome vector e-(H")T, a decoding
algorithm can be applied to eliminate the error vector. m:D-! is the first k
componenets from ¢ - e = m-D-1.G’ because G” is in a systematic form, The
plaintext message m is obtained as follows: m = m-D-1.D,

In the next section, the method for obtaining the systematic generator

matrix G is described, and it is shown that D is always invertible,
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I111.2 How to obtain the Generator Matrix in a systematic form.

The operation of transforming G' into G” consists of k stages. At each
stage, a column vector of G' is reduced to an unit vector having a nonzero at
the appropriate position through the following matrix multiplications:

GUi*1) = Ej-F;-6J) =D;-Gli), 1 < j <k, (8)
where G(1) = G’. After the seventh stage, systematic generator matrix G” is
obtained. Two groups of binary kxk matrices, Fj and Ej, 1 < j < k, are used to
transform the public generator matrix G’ into G”,

The role of the matrix Ej is to convert the j-th column of G(i) to the
unit vector having a nonzero at the j-th position. Due to a peculiar structure
of Ej which will be explained later, the j-th element of the j-th column of
GGi}, aj;jti), should be nonzero before premultiplying Gli) by E;. It is
guaranteed through premultiplying G(i) by the matrix Fj whose role is to replace
the j-th row of G{J) whose j-th element, aj;j(i), is not nonzero by another row
of GYJ) whose j-th element, aij{§), is nonzero. The replacing row should be
selected among the rows below the j-th row of G(i), namely j+1 < i < k. If
ajjli) is nonzero, Fj = Ikxk. Otherwise, F; is obtained by swapping the two rows
of the identity matrix Ikxk corresponding to the two rows of G{J) to be swapped.
The matrix Ej is obtained by replacing the j-th column of the identity matrix
Ikxk by the j-th column of Fj-G(i),

At stage one, G(2) = E;-F1-G{1) is obtained, where G(1) = G",

a1 o0 - -00 ap (1) aga() o o ap()
321(1) 10 - -001¢- 321(1) azz(l) e azk(l) ! A(l)
akl(l) 00 - -01 akl(l) akz(l) e s akk(l) !

L kxn

The kxk matrix on the left-hand side is E;, and the kxn matrix on the right-hand
side is (F1:6(1}), where A(1) is a binary kx(n-k) submatrix of (Fi-G{(1)) The
premultiplication of G(1) by Fi results in a11{1) = 1. As a result of the above
matrix multiplication, G(2) = E;-(F;:G{1)) is obtained. The first column of G(2)
becomes an unit vector [ 1 00 - - - 0 ]T by multiplying the rows of E; by the
first column of Fj.G(1), where ajj(1).a11(1) =1 and aiy(1).a;;¢1) + 1.a;1(1) =
0 for 2 < i < k, irregardless of the value of aji{l) because aj1{1) is nonzero.
At the j-th stage, Ej-(F;-Gli)) looks like:
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- - - -
100 -0atd) .. 0 100 - :-0ajW) - - agxld) !
010--0 azj(j) e 0 - 010 -0 azj(j) . azk(j) H j\(j)
000 -0akl) - - 1 000 - 0ak;li) - - agklJ) !

L L J

The operations explained above are repeated until we obtain G{k+*1) = Ey.
Fk-G(k) which is the systematic generator matrix G derived from G'. As a
result, G"(= G(k+*1)) = Ex-Fx - - - E1-F1-6' = (Dx - - - D1)-G’, where Dj = Ej-Fj
for 1 < j<k (Dk - - - Dy) can be rewritten as a single binary kxk matrix D,
If D is invertible, a connection between G’ and G” is made through the matrix
D1 as follows: G' = D-1.G”,
Now, we prove that D is invertible by showing that Ej, 1 < j < k, is
invertible. Fj, 1 < j < k, is obviously invertible because Fj is obtained by

swapping two rows of the kxk identity matrix so that |Fj{ = |I|.

Theorem 1 : E; is invertible for 1 < j < k.
{proof> We show that [Ej| =1 for 1 < j < k, A general form of |Ej| looks like:

o .. 0 alj(j) 0 0
0 1 - - - 0 az;td) 0 0
0 0 1 agg-nidd 0 - - 0
0 0 0 a;;jld) 0 0
0 0 0 ag+nild) 1 0
0 0 - - 0 ax(d) 0 - - 1

¥hen |Ej| is expanded by the j-th column of Ej, |Ej| = ajj{i) jLi}| + azjti}.|Lz|
+ - - o+ oaysli Lyl o+ - ¢ o 4 axjli).jlk), where Li, 1 < i < k, is a
(k-1)x(k-1) submatrix obtained by deleting the i-th row and the j-th column of
Ej. Because the i-th column of Li for 1 < i < j-1 and j+1 < i < k is always zero
vector so that |Li| = 0, |Ej| = ajj{i)-|Lj}. ajjli) is nonzero and |{L;{ =

(k-1)x(k-1)| = 1. Therefore, [Ej| =1 for 1 < j < k. Q.E.D,
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III.3 VWork Factor.

Most of the work is due to the matrix multiplications for deriving a
systematic generator matrix G” from G'. The following describes a simple
algorithm to tranform G’ into G” and to obtain D = Ex-Fx - - . E; Fi.

Algorithm 1 :
D & Ikxk
DO j=1 TO k
Obtain Fj to compute Fj-G{J} and F;-D
{iej:
while ((ajji) =0 ) i i +1;
if (i=3) thenFj « Igxk
Fj-6() = G(J)
Fi-D=D
else Fj « swap(i-th row, j-th row) of Ikxk
Fj-6(i) « swap(i-th row, j-th row) of G(i)
Fj-D « swap(i-th row, j-th row) of D: }
Obtain E;j { replace the j-th column of Ikxk
by the j-th column of F;.G(i) }
Compute G(i*1) « Ej.(F;-G(iJ)) :
Compute D « Ej-(F;-D) :
END DO
The effect of premultiplying G(i) and D by Fj is to swap the two rows of
Gli) and two rows of D, respectively, which actually needs no matrix
multiplication, At most 2-'k:n bit operations are needed in order to compute Ej-:
(Fj -G{i)) because each row of Ej has at most two nonzero elements. Computing Ej-
(Fj-D) also needs at most 2-k? bit operations. The total work factor to derive
G and D is at most W = k-( 2:k-n + 2.k2 ) bit operations. Therefore, the
complexity of the algorithm 1 is 0(k3), which is polynomial time, For the value
of k = 524 which is suggested by McEliece, W = 8.5:108 = 230 bit operations,
Using a powerful microcomputer, it would take about a few hours to obtain both D
and G“,
Once both G” and D are derived, the remaining job of the cryptanalyst is
the application of a decoding algorithm which is also performed by the
legitimate receiver., Hence, W is the additional burden on the cryptanalyst over

the work performed by the receiver.
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III. 4 Trapdoors.

In his cryptanalytic attack against iterated knapsack cryptosystems,
Brickell[5] has transformed the public knapsack into one of several easy
knapsacks which could have been used to break it without knowing the receiver’s
original easy knapsack.

Adams and Meijer[3] claimed that a Brickell-like attack against the
McEliece’s public-key cryptosystem would not be possible . They argued that the
only transformation which converts the public generator matrix G’ into another
generator matrix G” whose algebraic structure allows the cryptanalyst to use a
decoding algorithm is the original transformation G = S-1.G" -P-1,

The attack suggested in the previous sections is based on a kind of
trapdoor G” which can be utilized to obtain the syndrome vector. The trapdoor G”
is obtained from the transformation G’ = D-1.G’, which contradicts the arguement

of Adams and Mei jer.

IV, Concluding Reparks,

A new cryptanalytic attack against the McEliece’s public-key cryptosystem
was given, Contrary to the other cryptanalytic algorithms which run in
exponential time, the new algorithm suggested in this paper runs in polynomial
time, It is based on the existence of a new trapdoor generator matrix which can
be easily obtained from the public generator matrix. The algebraic structure of
the trapdoor allows the cryptanalyst to easily decrypt the intercepted
ciphertext,

Diffie(6] predicted that the McEliece's public-key cryptosystem would be
fated to fall because it bears a structural similarity to Merkle-Hellman's
knapsack system. The similarity between the McEliece's system and the knapsack
system might be the likelihood of there being transformations from the public
key into the trapdoor which can play the same role as the private key.

In conclusion, the McEliece's system is not secure any more.
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