• Title/Summary/Keyword: Polymer Modified Electrode

Search Result 50, Processing Time 0.027 seconds

Physioelectrochemical Investigation of Electrocatalytic Oxidation of Saccharose on Conductive Polymer Modified Graphite Electrode

  • Naeemy, A.;Ehsani, A.;Jafarian, M.;Moradi, M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.88-94
    • /
    • 2015
  • In this study we investigated the electrocatalytic oxidation of saccharose on conductive polymer- Nickel oxide modified graphite electrodes based on the ability of anionic surfactants to form micelles in aqueous media. This NiO modified electrode showed higher electrocatalytic activity than Ni rode electrode in electrocatalytic oxidation of saccharose. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of saccharose was found in agreement with the values obtained from CV measurements.

Poly(anthranilic acid) Microspheres: Synthesis, Characterization and their Electrocatalytic Properties

  • Ranganathan, Suresh;Raju, Prabu;Arunachalam, Vijayaraj;Krishnamoorty, Giribabu;Ramadoss, Manigandan;Arumainathan, Stephen;Vengidusamy, Narayanan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1919-1924
    • /
    • 2012
  • Poly(anthranilic acid) was synthesized by rapid mixing method using 5-sulphosalicylic acid as a dopant. The synthesized polymer was characterized by various techniques like FT-IR, UV-Visible, and X-ray diffraction $etc.$, The FT-IR studies reveal that the 5-sulphosalicylic acid is well doped within the polymer. The morphological property was characterized by field emission scanning electron microscopic technique. The electrochemical properties of the polymer were studied by cyclic voltammetric method. The synthesized polymer was used to modify glassy carbon electrode (GCE) and the modified electrode was found to exhibit electrocatalytic activity for the oxidation of uric acid (UA).

Determination of Cadmium(II) Ion Using the Nafion-Ethylenediamine-Modified Glassy Carbon Electrode (Nafion-Ethylenediamine이 수식된 유리탄소전극에 의한 Cd(II) 이온의 정량)

  • Kim, Jin Ah;Ko, Young Chun;Park, Chan Ju;Park, Byung Ho;Chung, Keun Ho
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.123-130
    • /
    • 2001
  • Determination of cadmium(II) ion with a perfluorinated sulfonated polymer-ethylenediamine(nafion-en) modified glassy carbon electrode was studied. It was based on the chemical reactivity of an immobilized layer(nafion-en) to yield complex $[Cd(en)_2]^{2+}$. The reduction peak potential by differential pulse voltammetry(DPV) was observed at $-0.780({\pm}0.005)V$ vs. As/AgCl. The linear calibration curve was obtained in cadmium(II) ion concentration range $5.0{\times}10^{-7}-2.0{\times}10^{-5}M$, and the detection limit(3s) was $2.20{\times}10^{-7}M$. The detection limit of nafion-en modified glassy carbon electrode has been shown about 14 higher sensitivity than a bare glassy carbon electrode.

  • PDF

Determination of Copper(II) ion with a nafion-ethylenediamine modified glassy carbon electrode (내피온-에틸렌디아민이 수식된 유리탄소전극으로 구리(II) 이온의 정량)

  • Ko, Young Chun;Kim, Hee Cheol
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.213-218
    • /
    • 2007
  • Copper(II) ion was measured with the use of a perfluorinated sulfonated polymer-ethylenediamine (nafion-en) modified glassy carbon electrode. The electrode mechanism was based on the chemical reactivity of an immobilized layer (nafion-en) to yield complex $[Cu(en)_2]^{+2}$. The reduction potential peak by differential pulse voltammetry(DPV) was observed at -0.4402V(${\pm}0.0050V$) (vs. Ag/AgCl). The linear calibration curve was obtained from $1.0{\times}10^{-6}$ to $1.0{\times}10^{-4}M$ copper(II) ion concentration, and the detection limit(3s) was $1.96{\times}10^{-6}M$.

The Preparation of Polyaniline Electrode Modified by Copper Phthalocyanine on Supporting Carbon Paper

  • Park, Jin-Seok;Kim, Jeong-Soo
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.179-183
    • /
    • 2001
  • Cathode materials for the polymer electrolyte membrane fuel cell was prepared by electropoly-merization of aniline at carbon paper in the presence of copper tetrasulfonato-phthalocyanine (CuTsPc) and their electrocatalytic behavior was studied. The amount of polyaniline and CuTsPc in the carbon paper was determined by UV spectroscopy of residual solution in electrochemical cell. The redox process of the prepared electrodes was investigated with cyclic voltammetry. The highest reversible current density was observed at the electrode that contains 27.6 wt% of polyaniline and 19.7 wt% of CuTsPc. The morphology of composite electrode from SEM showed the presence of large cluster of polyaniline with CuTsPc, which should be more finely interpenetrated into macropores of carbon for the better electrocatalytic activity.

  • PDF

Electrochemical Polymerization of Ruthenium(II) Complex and Application to Acetaminophen Analysis

  • Kannan, Sethuraman;Son, Jung-Ik;Yang, Jee-Eun;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1341-1345
    • /
    • 2011
  • A novel ruthenium(II) complex, [$RuCl_2(DMSO)_2$(PhenTPy)] has been synthesized by the condensation of $RuCl_2(DMSO)_4$ with (1-(1,10-phenanthrolinyl)-2,5-di(2-thienyl)-1H-pyrrole)[PhenTPy] in $CHCl_3$ solution. The [$RuCl_2(DMSO)_2$(PhenTPy)] complex modified electrode was fabricated through the electropolymerization of the monomer in a 0.1 M tetrabutylammonium perchlorate (TBAP)/$CH_2Cl_2$ solution, to take advantage of the electronic communication between metal ion center by the conjugated backbone. The UV-visible spectroscopy (UV), mass spectrometry (MS), and cyclic voltammetry (CV) were employed to characterize the [$RuCl_2(DMSO)_2$(PhenTPy)] complex and its polymer (poly-Ru(II)Phen complex). The poly-Ru(II)Phen complex modified electrode exhibited an electrocatalytic activity to the oxidation of acetaminophen and the catalytic property was used for the analysis of acetaminophen at the concentration range between 0.09 and 0.01 mM in a phosphate buffer solution (pH 7.0).

Biomimetic Copper Complex Containing Polymer Modified Electrode for Electrocatalytic Reduction of Oxygen

  • Saravanakumar, D.;Nagarale, Rajaram Krishna;Jirimali, Harish Chandra;Lee, Jong Myung;Song, Jieun;Lee, Junghyun;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.298-305
    • /
    • 2016
  • The development of non-precious metal based electrocatalysts is highly desired for the oxygen reduction reaction (ORR) as alternates to noble metal based ORR electrocatalysts. Herein, we report mononulcear copper(II) complex $[CuLbpy]ClO_4$ (L=4-[(2-hydroxyphenylimino)methyl]benzoic acid) containing poly(allylamine.HCl) polymer (PAlACuLbpy) as an electrocatalyst for oxygen reduction reaction (ORR). PAlACuLbpy was mixed with poly(acrylic acid) and tetraethylortho silicate to prepare a composite and then deposited on the screen printed electrode surface. The modified electrode (PAlACuLbpy/PCE) is highly stable and showed a quasi-reversible redox behavior with $E_{1/2}=-0.2V$ vs. Ag/AgCl(3 M KCl) in 0.1 M phosphate buffer at pH 7 under argon atmosphere. PAlACuLbpy/PCE exhibited a remarkable ORR activity with an onset potential of -0.1 V vs Ag/AgCl in 0.1 M PB (pH 7) in the presence of oxygen. The kinetics for ORR was studied by rotating disk voltammetry in neutral aqueous medium and the results indicated that the number of electrons involving in the ORR is four and the conversion products are water and hydrogen peroxide.

Simple Preparation of Diaphorase/Polysiloxane Viologen Polymer Modified Electrode for Sensing NAD and NADH

  • Song, Ji-Eun;Hong, Zhenyu;Nagarale, Rajaram Krishna;Shin, Woon-Sup
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.163-167
    • /
    • 2011
  • Nicotinamide adenine dinucleotide, $NAD^+$, and its reduced form, NADH, play important roles as coenzymes in many enzymatic reactions. Electrochemical methods for $NAD^+$ or NADH detection or generation are drawn attention because it can provide the simple and low cost platform with fairly good sensitivity. In this study, the polysiloxane viologen polymer/diaphorase/hydrophilic polyurethane (PSV/DI/HPU) modified electrodes were simply prepared and demonstrated for bio-electrocatalytic $NAD^+$ sensors. The electrodes were co-immobilized with diaphorase and polysiloxane viologen polymer as an electron mediator followed by the overcoating with HPU membrane. The mixture of the enzyme and the electron mediator was well stabilized within HPU membrane and exhibited good reversibility and stability. The sensitivity was 0.2 $nA{\cdot}{\mu}M^{-1}$ and the detection limit was 28 ${\mu}M$ with a response time of 50 s ($t_{90%}$). The capability for NADH sensor was also observed on the PSV/DI/HPU electrode.

Chitosan-Cu-salen/Carbon Nano-Composite Based Electrode for the Enzyme-less Electrochemical Sensing of Hydrogen Peroxide

  • Jirimali, Harishchandra Digambar;Saravanakumar, Duraisamy;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.169-175
    • /
    • 2018
  • Cu-Salen complex was prepared and attached into chitosan (Cs) polymer backbone. Nanocomposite of the synthesized polymer was prepared with functionalized carbon nano-particles (Cs-Cu-sal/C) to modify the electrode surface. The surface morphology of (Cs-Cu-sal/C) nanocomposite film showed a homogeneous distribution of carbon nanoparticles within the polymeric matrix. The cyclic voltammogram of the modified electrode exhibited a redox behavior at -0.1 V vs. Ag/AgCl (3 M KCl) in 0.1 M PB (pH 7) and showed an excellent hydrogen peroxide reduction activity. The Cs-Cu-sal/C electrode displays a linear response from $5{\times}10^{-6}$ to $5{\times}10^{-4}M$, with a correlation coefficient of 0.993 and detection limit of $0.9{\mu}M$ (at S/N = 3). The sensitivity of the electrode was found to be $0.356{\mu}A\;{\mu}M^{-1}\;cm^{-2}$.