DOI QR코드

DOI QR Code

Electrochemical Polymerization of Ruthenium(II) Complex and Application to Acetaminophen Analysis

  • Received : 2011.02.21
  • Accepted : 2011.03.15
  • Published : 2011.04.20

Abstract

A novel ruthenium(II) complex, [$RuCl_2(DMSO)_2$(PhenTPy)] has been synthesized by the condensation of $RuCl_2(DMSO)_4$ with (1-(1,10-phenanthrolinyl)-2,5-di(2-thienyl)-1H-pyrrole)[PhenTPy] in $CHCl_3$ solution. The [$RuCl_2(DMSO)_2$(PhenTPy)] complex modified electrode was fabricated through the electropolymerization of the monomer in a 0.1 M tetrabutylammonium perchlorate (TBAP)/$CH_2Cl_2$ solution, to take advantage of the electronic communication between metal ion center by the conjugated backbone. The UV-visible spectroscopy (UV), mass spectrometry (MS), and cyclic voltammetry (CV) were employed to characterize the [$RuCl_2(DMSO)_2$(PhenTPy)] complex and its polymer (poly-Ru(II)Phen complex). The poly-Ru(II)Phen complex modified electrode exhibited an electrocatalytic activity to the oxidation of acetaminophen and the catalytic property was used for the analysis of acetaminophen at the concentration range between 0.09 and 0.01 mM in a phosphate buffer solution (pH 7.0).

Keywords

References

  1. Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polymers; Marcel Dekker: New York, 1998.
  2. Park, S.-M. Electrochemistry of $\pi$-conjugated polymer, in: Nalwa, H. S., Ed.; Handbook of Organic Conductive Molecules and Polymers; 3, Wiley: Chichester, 1997; 429.
  3. Pittman, C. U.; Carraher, C. E.; Reynolds, J. R. Encyclopedia of Polymer Science and Engineering; Wiley: New York, 1987, 10, 541.
  4. Cameron, C. G.; Pickup, P. G. J. Am. Chem. Soc. 1999, 121, 7710. https://doi.org/10.1021/ja9915246
  5. Lyons, M. E. G. In Electroactive Polymer Electrochemistry, Part 1:Fundamentals; Lyons, M. E. G., Ed.; Plenum Press: New York,1994; 1-235.
  6. Miller, J. S. Adv. Mater. 1993, 5, 587. https://doi.org/10.1002/adma.19930050718
  7. Miller, J. S. Adv. Mater. 1993, 5, 671. https://doi.org/10.1002/adma.19930050918
  8. Lee, J.-W.; Park, D.-S.; Park, S.-M.; Shim, Y.-B. J. Electrochem. Soc. 1992, 139, 3507. https://doi.org/10.1149/1.2069107
  9. Rahman, M. A.; Kumar, P.; Park, D.-S.; Shim, Y.-B. Sensors2008, 118.
  10. Sahami, S.; Osteryoung, R. A. Inorg. Chem. 1984, 23, 2511. https://doi.org/10.1021/ic00184a028
  11. Cameron, C. G.; Pickup, P. G. Chem. Commun. 1997, 303.
  12. Wolf, M. O.; Wrighton, M. S. Chem. Mater. 1994, 6, 1526. https://doi.org/10.1021/cm00045a009
  13. Zhu, S. S.; Swager, T. M. Adv. Mater. 1996, 8, 497. https://doi.org/10.1002/adma.19960080609
  14. Wolf, M. O. Adv. Mater. 2001, 13, 545. https://doi.org/10.1002/1521-4095(200104)13:8<545::AID-ADMA545>3.0.CO;2-3
  15. Garcia, C.; Villagra, D.; Caruso, F.; Rossi, M.; Matsuhiro, B.;Mendoza, L.; Aguirre, M. J.; Isaacs, M. Inorg. Chem. Commun.2009, 12, 392. https://doi.org/10.1016/j.inoche.2009.02.017
  16. Rahman, M. A.; Lee, K.-S.; Park, D.-S.; Won, M.-S.; Shim, Y.-B.Biosens. Bioelectron. 2008, 23, 857. https://doi.org/10.1016/j.bios.2007.09.005
  17. Koh, W. C. A.; Son, J. I.; Choe, E. S.; Shim, Y.-B. Anal. Chem.2010, 82, 10075. https://doi.org/10.1021/ac102041u
  18. Wang, J.; Cai, X.; Rivas, G.; Shiraishi, H.; Farias, P. A. M.;Dontha, N. Anal. Chem. 1996, 68, 2629. https://doi.org/10.1021/ac9602433
  19. Ellis, C. D.; Margerum, L. D.; Murray, R. W.; Meyer, T. J. Inorg. Chem. 1983, 22, 1283. https://doi.org/10.1021/ic00151a005
  20. Eddy, S.; Warriner, K.; Christie, I.; Ashworth, D.; Purkiss, C.;Vadgama, P. Biosens. Bioelectron. 1995, 10, 831. https://doi.org/10.1016/0956-5663(95)99222-7
  21. Miner, D. J.; Rice, J. R.; Riggin, R. M. Anal. Chem. 1981, 53,2258. https://doi.org/10.1021/ac00237a029
  22. Boopathi, M.; Won, M.-S.; Shim, Y.-B. Anal. Chim. Acta. 2004,512, 191. https://doi.org/10.1016/j.aca.2004.03.005
  23. Goyal, R. N.; Singh, S. P. Electrochim. Acta. 2006, 51, 3008. https://doi.org/10.1016/j.electacta.2005.08.036
  24. Wangfuengkanagul, N.; Chailapakul, O. J. Pharm. Biomed. Anal.2002, 28, 841. https://doi.org/10.1016/S0731-7085(01)00695-1
  25. Rajendra, N. G.; Vinod, K. G.; Munetaka, O.; Neeta, B. Electrochem. Commun. 2005, 7, 803. https://doi.org/10.1016/j.elecom.2005.05.005
  26. Evans, I. P.; Spencer, A.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 204.
  27. Kojima, T.; Amano, T.; Ishii, Y.; Ohba, M.; Okaue, Y.; Matsuda, Y. Inorg. Chem. 1998, 37, 4076. https://doi.org/10.1021/ic971049h
  28. Ellis, C. D.; Margerum, L. D.; Murray, R. W.; Meyer, R. J. Inorg. Chem. 1983, 22, 1283. https://doi.org/10.1021/ic00151a005
  29. Hwang, J. Y.; Son, J. I.; Shim, Y.-B. Sol. Energy Mater. Sol. Cells2010, 94, 1286. https://doi.org/10.1016/j.solmat.2010.03.027
  30. Eskelinen, E.; Costa, P. D.; Haukka, M. J. Electroanal. Chem.2005, 579, 257. https://doi.org/10.1016/j.jelechem.2005.02.014
  31. Gonzalez-Sanchez, M. I.; Rubio-Retama, J.; Lopez-Cabarcos, E.; Valero, E. Biosens. Bioelectron. 2011, 26, 1883. https://doi.org/10.1016/j.bios.2010.03.024

Cited by

  1. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.319
  2. Review-Functional Platforms for (Bio)sensing: Thiophene-Pyrrole Hybrid Polymers vol.167, pp.3, 2011, https://doi.org/10.1149/1945-7111/ab6e5f