DOI QR코드

DOI QR Code

Simple Preparation of Diaphorase/Polysiloxane Viologen Polymer Modified Electrode for Sensing NAD and NADH

  • Song, Ji-Eun (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Hong, Zhenyu (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Nagarale, Rajaram Krishna (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Shin, Woon-Sup (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Received : 2011.09.09
  • Accepted : 2011.09.29
  • Published : 2011.09.30

Abstract

Nicotinamide adenine dinucleotide, $NAD^+$, and its reduced form, NADH, play important roles as coenzymes in many enzymatic reactions. Electrochemical methods for $NAD^+$ or NADH detection or generation are drawn attention because it can provide the simple and low cost platform with fairly good sensitivity. In this study, the polysiloxane viologen polymer/diaphorase/hydrophilic polyurethane (PSV/DI/HPU) modified electrodes were simply prepared and demonstrated for bio-electrocatalytic $NAD^+$ sensors. The electrodes were co-immobilized with diaphorase and polysiloxane viologen polymer as an electron mediator followed by the overcoating with HPU membrane. The mixture of the enzyme and the electron mediator was well stabilized within HPU membrane and exhibited good reversibility and stability. The sensitivity was 0.2 $nA{\cdot}{\mu}M^{-1}$ and the detection limit was 28 ${\mu}M$ with a response time of 50 s ($t_{90%}$). The capability for NADH sensor was also observed on the PSV/DI/HPU electrode.

Keywords

References

  1. N. Li and G. Chen, Talanta, 57, 961 (2002). https://doi.org/10.1016/S0039-9140(02)00125-X
  2. W. Ying, Front. Biosci., 12, 1863 (2007). https://doi.org/10.2741/2194
  3. W. Xie, A. Wu and E. S. Yeung, Anal. Chem., 81, 1280 (2009). https://doi.org/10.1021/ac802249m
  4. L. G. Lee and G. M. Whitesides, J. Am. Chem. Soc., 107, 6999 (1985). https://doi.org/10.1021/ja00310a043
  5. E. Steckhan, S. Herrmann, R. Ruppert, E. Dietz, M. Frede and E. Spika, Organometal., 10, 1568 (1991). https://doi.org/10.1021/om00051a056
  6. M. Hall and A. S. Bommarius, Chem. Rev., 111, 4088, (2011). https://doi.org/10.1021/cr200013n
  7. F. S. Saleh, M. R. Rahman, T. Okajima, L. Mao and T. Ohsaka, Biochem., 80, 121 (2011).
  8. C. Creanga and N. E. Murr, J. Electroanal. Chem., 656, 179 (2011). https://doi.org/10.1016/j.jelechem.2010.11.030
  9. T. N. Rao, I. Yagi, T. Miwa, D. A. Tryk and A. Fujishima, Anal. Chem., 71, 2506 (1999). https://doi.org/10.1021/ac981376m
  10. A. Radoi and D. Compagnone, Bioelectrochem., 76, 126 (2009). https://doi.org/10.1016/j.bioelechem.2009.06.008
  11. J. Moiroux and P. J. Elving, J. Am. Chem. Soc., 102, 6533 (1980). https://doi.org/10.1021/ja00541a024
  12. R. L. Blankespoor and L. L. Miller, J. Electroanal. Chem., 171, 231 (1984) https://doi.org/10.1016/0022-0728(84)80116-3
  13. F. Pariente, F. Tobalina, G. Moreno, L. Hernandez, E. Lorenzo and H. D. Abruna, Anal. Chem., 69, 4065 (1997) . https://doi.org/10.1021/ac970445e
  14. F. Hollmann, A. Schmid and E. Stekhan, Angew. Chem. Int. Ed., 40, 169 (2001). https://doi.org/10.1002/1521-3773(20010105)40:1<169::AID-ANIE169>3.0.CO;2-T
  15. W. Hummel, E. Schmidt, C. Wandrey and M.-R. Kula, Appl. Microbiol. Biotechnol., 25, 175 (1986).
  16. C.-H. Wong and G. M. Whitesides, J. Am. Chem. Soc., 103, 4890 (1981). https://doi.org/10.1021/ja00406a037
  17. R. DiCosimo, C.-H. Wong, L. Daniels and G. M. Whitesides, J. Org. Chem., 46, (1981).
  18. H. Maeda and S. Kajiwara, Biotechnol. Bioeng., 27, 595 (1985).
  19. S. Kim, S.-E. Yun and C. Kang, J. Electroanal. Chem., 465, 153 (1999). https://doi.org/10.1016/S0022-0728(99)00074-1
  20. Y. Ogino, K. Takagi, K. Kano and T. Ikeda, J. Electroanal. Chem., 396, 517 (1995). https://doi.org/10.1016/0022-0728(95)04089-7
  21. T. Matsue, H.-C. Chang, I. Uchida and T. Osa, Tetrahedron Lett., 29, 1551 (1988). https://doi.org/10.1016/S0040-4039(00)80349-4
  22. H.-C. Chang, T. Matsue, I. Uchida and T. Osa, Chem. Lett., 1119 (1989).
  23. A. J. Fry, S. B. Sobolov, M. D. Leonida and K. I. Voivodov, Tetrahedron Lett., 35, 5607 (1994). https://doi.org/10.1016/S0040-4039(00)77258-3
  24. K. I. Voivodov, S. B. Sobolov, M. D. Leonida and A. J. Fry, Bioorg. Med. Chem. Lett., 5, 681 (1995). https://doi.org/10.1016/0960-894X(95)00099-F
  25. Y. Kashiwagi, Y. Yanagisawa, N. Shibayama, K. Nakahara, F. Kurashima, J. Anzai and T. Osa, Electrochim. Acta, 42, 2267 (1997). https://doi.org/10.1016/S0013-4686(97)85509-0
  26. B. Limoges, D. Marchal, F. Mavre and J.-M. Saveant, J. Am. Chem. Soc., 128, 2084 (2006). https://doi.org/10.1021/ja0569196
  27. A. Sato, K. Kano and T. Ikeda, Chem. Lett., 32, 880 (2003). https://doi.org/10.1246/cl.2003.880
  28. K. I. Voivodov, S. B. Sobolov, M. Draganoiu and A. J. Fry, Bioorg. Med. Chem. Lett., 5, 681 (1995). https://doi.org/10.1016/0960-894X(95)00099-F
  29. Y. Kashiwagi, Y. Yanagisawa, N. Shibayama, K. Nakahara, F. Kurashima, J.-I. Anzai and T. Osa, Chem. Lett., 1093 (1996).

Cited by

  1. Ferrocene Tethered Polyvinyl Alcohol/Silica Film Electrode for Electrocatalytic Sulfite Sensing 2018, https://doi.org/10.1002/elan.201700459
  2. Covalent Immobilization of Diaphorase in Viologen Polymer Network for Highly Sensitive Detection of NAD+and NADH vol.5, pp.1, 2014, https://doi.org/10.5229/JECST.2014.5.1.19