DOI QR코드

DOI QR Code

Electrodeposition of Silicon from Fluorosilicic Acid Produced in Iraqi Phosphate Fertilizer Plant

  • Received : 2011.09.11
  • Accepted : 2011.09.25
  • Published : 2011.09.30

Abstract

The availability, low toxicity, and high degree of technological development make silicon the most likely material to be used in solar cells, the cost of solar cells depends entirely on cost of high purity silicon production. The present work was conducted to electrodeposite of silicon from $K_2SiF_6$, an inexpensive raw material prepared from fluorosilicic acid ($H_2SiF_6$) produced in Iraqi Fertilizer plants, and using inexpensive graphite material as cathode electrode. The preparation of potassium fluorosilicate was performed at ($60^{\circ}C$) in a three necks flask provided with a stirrer, while the electro deposition was performed at $750^{\circ}C$ in a three-electrodes configuration with melt containing in graphite pot. High purity potassium fluorosilicate (99.25%) was obtained at temperature ($60^{\circ}C$), molar ratio-KCl/$H_2SiF_6$(1.4) and agitation (600 rpm). Spongy compact deposits were obtained for silicon with purity not less than (99.97%) at cathode potential (-0.8 V vs. Pt), $K_2SiF_6$ concentration (14% mole percent) with grain size (130 ${\mu}m$) and level of impurities (Cu, Fe and Ni) less than (0.02%).

Keywords

References

  1. B. G. Gribov and K. N. Zinov'ev, Inorganic Materials, 39[7], 653-662(2003). https://doi.org/10.1023/A:1024553420534
  2. M. A. Green, Switzerland, pp. 69-82 (1987).
  3. D. Elwell, J. Crystal Growth, 52, 741 (1981). https://doi.org/10.1016/0022-0248(81)90371-7
  4. D. Elwell and S. Feigelson, Electrochim. Acta, 27, 673 (1982). https://doi.org/10.1016/0013-4686(82)85058-5
  5. G. F. Fulop and R. M. Taylor, Ann. Rev. Mater. Sci., 15, 197 (1985). https://doi.org/10.1146/annurev.ms.15.080185.001213
  6. D. Elwell and G. M. Rao, J. Appl. Electrochemistry, 18, 15-22 (1988). https://doi.org/10.1007/BF01016199
  7. R. Monnier, Chimia, 37, 109 (1983).
  8. F. Hayes, H. Bomberger and F. J. Froes, Metals, 36, 670 (1984).
  9. F. Ullik, Ber. A kad . Wien, 52, 115 (1865).
  10. R. Monnier and D. U. S. Barakat, Pat. 3,219,561 (1965).
  11. U. Cohen and R. A. Huggins, J. Electrochim. Soc., 123, 381 (1976). https://doi.org/10.1149/1.2132829
  12. Cohen, U. U.S.Pat. 4,142,947 (1979).
  13. G. M. Rao, D. ELwell and S. Feigelson, J. Electrochem. Soc., 127, 1940 (1980). https://doi.org/10.1149/1.2130041
  14. G. M. Rao, D. ELwell and S. Feigelson, J. Electrochem. Soc., 128, 1708 (1981). https://doi.org/10.1149/1.2127715
  15. J. M. Olson and K. L. Carleton, J. Electrochem. Soc., 128, 2698 (1981). https://doi.org/10.1149/1.2127340
  16. G. M. Rao, D. ELwell and S. Feigelson, Solar Energy Materials, 7, 15 (1982). https://doi.org/10.1016/0165-1633(82)90092-2
  17. R. Boen and J. Bouteillon, J. Appl. Electrochemistry, 13, 277 (1983). https://doi.org/10.1007/BF00941599
  18. K. H. Stern and M. E. MeCollum, Thin solid films, 124, 129 (1985). https://doi.org/10.1016/0040-6090(85)90255-X
  19. J. T. Moore, M. J. Wang and T. F. Ciszek, Fused-Salt Electrodeposition of Thin-layer Silicon. Presented at the 26th IEEE photovoltaic specialists conference, September 29- Octobers, , Anaheim, California (1997).

Cited by

  1. Electrodeposition of Continuous Silicon Coatings from the KF-KCl-K 2 SiF 6 Melts vol.164, pp.8, 2017, https://doi.org/10.1149/2.0171708jes