• Title/Summary/Keyword: Polycrystalline Silicon

Search Result 344, Processing Time 0.04 seconds

A Computer Model for Polycrystalline Silicon $n^+$ -p Solar Cells (다결정 실리콘 $n^+$ -p 태양전지의 Computer Model)

  • 정호선
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.6
    • /
    • pp.30-37
    • /
    • 1981
  • Numerical calculations have beee made of the effect of grain size on the three-dimensional carrier density, the quantum efficiency, and the AMI efficiency of 30$\mu$m polycrystalliue silicon p-n junction solar cells. Quantum efficiencies calculated for the polycrystalline silicon solar cells are compared to the monocrystalline cases. An efficiency of 12% can theoretically be obtained with grain size 100$\mu$m, and 6% for 5$\mu$m grains.

  • PDF

Optical, Mechanical and Tribological Properties of $Y_2O_3$ $Er_2O_3$ and $Nd_2O_3$ Doped Polycrystalline Silicon Nitride Ceramics

  • Joshi, Bhupendra;Lee, Su-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.51.1-51.1
    • /
    • 2010
  • $Y_2O_3$ $Er_2O_3$ and $Nd_2O_3$ doped polycrystalline silicon nitride were prepared by hot pressed sintering at $1850^{\circ}C$ and their optical transmittance were investigated in visible and in infrared region. Mechanical and tribological properties were also investigated. Grain growth in silicon nitride was reduced with addition of $Y_2O_3$ and $Nd_2O_3$. 1 wt.% of each rare earth metal were sintered with 3 wt.% MgO, 9wt.% AlN and 87 wt.% of ${\alpha}-Si_3N_4$. Adding these rare earth metal oxides shows good mechanical properties as high strength and toughness and also shows low friction coefficient.

  • PDF

Fabrication of Low Temperature Poly-Silicon by Inductively Coupled Plasma Assisted Magnetron Sputtering (유도결합 플라즈마-마그네트론 스퍼터링 방법을 이용한 저온 폴리실리콘 제조)

  • 유근철;박보환;주정훈;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.164-168
    • /
    • 2004
  • Polycrystalline silicon thin films were deposited by inductively coupled plasma (ICP) assisted magnetron sputtering using a gas mixture of Ar and $H_2$ on a glass substrate at $250^{\circ}C$. At constant Ar mass flow rate of 10 sccm, the working pressure was changed between 10mTorr and 70mTorr with changing $H_2$ flow rate. The effects of RF power applied to ICP coil and $Ar/H_2$ gas mixing ratio on the properties of the deposited Si films were investigated. The crystallinity was evaluated by both X-ray diffraction and Raman spectroscopy. From the results of Raman spectroscopy, the crystallinity was improved as hydrogen mixing ratio was increased up to$ Ar/H_2$=10/16 sccm; the maximum crystalline fraction was 74% at this condition. When RF power applied to ICP coil was increased, the crystallinity was also increased around 78%. In order to investigate the surface roughness of the deposited films, Atomic Force Microscopy was used.

Effective Characterization Methods of Polycrystalline Silicon Films Fabricated by Ni Induced Crystallization

  • Koo, Hyun-Woo;Maidanchuk, Ivan;Jung, Jae-Wan;Lee, Ki-Yong;Berkeley, Brian H.;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.250-253
    • /
    • 2009
  • Effective methods for monitoring the quality of polycrystalline silicon (poly-Si) films are discussed. Raman spectroscopy is typically used to determine crystallinity of poly-Si, but this method has limitations for data gathering on large substrates for mass production of poly-Si TFT backplanes. Spectroscopic ellipsometry is proposed as an alternative for fast and simple estimation of poly-Si quality on large substrates. By using both ellipsometry and Raman spectroscopy, it is possible to determine whether the quality and uniformity of the poly-Si films meet the criteria required for mass production of TFT backplanes for AMOLED panels.

  • PDF

Improvement of the Electrical Characteristics of a Polysilicon TFT Using Buffered Oxide Etch Cleaning (Buffered Oxide Etch 세정에 의한 다결정 실리콘 TFT의 전기적 특성 개선)

  • 남영묵;배성찬;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.31-36
    • /
    • 2004
  • we developed a technique to manufacture more reliable polycrystalline silicon TFT-LCDs using UV cleaning and buffered oxide etch(BOE) cleaning which remove the native oxide of the silicon surface before laser annealing. To investigate the effects of pre-treatments on the surface roughness of polycrystalline silicon, we measured atomic force microscopy(AFM). Also the electrical characteristics of polysilicon TFTs, breakdown characteristic and switching Performance, were tested for various pre-treatment conditions and several locations in large glass substrate.

Mobility Enhancement in Polycrystalline Silicon Thin Film Transistors due to the Dehydrogenation Mechanism

  • Lee, Seok Ryoul;Sung, Sang-Yun;Lee, Kyong Taik;Cho, Seong Gook;Lee, Ho Seong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1329-1333
    • /
    • 2018
  • We investigated the mechanism of mobility enhancement after the dehydrogenation process in polycrystalline silicon (poly-Si) thin films. The dehydrogenation process was performed by using an in-situ CVD chamber in a $N_2$ ambient or an ex-situ furnace in air ambient. We observed that the dehydrogenated poly-Si in a $N_2$ ambient had a lower oxygen concentration than the dehydrogenated poly-Si annealed in an air ambient. The in-situ dehydrogenation increased the (111) preferred orientation of poly-Si and reduced the oxygen concentration in poly-Si thin films, leading to a reduction of the trap density near the valence band. This phenomenon gave rise to an increase of the field-effect mobility of the poly-Si thin film transistor.

The Electrical Characteristics of Recrystallized Silicon by CW $CO_2$ Laser (CW $CO_2$ 레이저에 의하여 재결정화된 실리콘의 전기적 특성)

  • Park, Jong Tae;Lee, Moon Key;Kim, Bong Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.79-84
    • /
    • 1987
  • In this study, the recrystallization of polycrystalline silicn by CW CO2 laser is reported. With a variation of CW CO2 laser power, the surface morphology of recrystallized silicon is observed by SEM and the value of resistivity and mobility is obtained by Hall measurement. From the obtained results, it is concluded that the polycrystalline silicon is locally melted at 39W laser power and the reduction of resistivity and the increase of mobility are caused by the increase of grain size and the reduction of the potentical barrier at grain boundaries.

  • PDF

SiC Contaminations in Polycrystalline-Silicon Wafer Directly Grown from Si Melt for Photovoltaic Applications (실리콘 용탕으로부터 직접 제조된 태양광용 다결정 실리콘의 SiC 오염 연구)

  • Lee, Ye-Neung;Jang, Bo-Yun;Lee, Jin-Seok;Kim, Joon-Soo;Ahn, Young-Soo;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.33 no.2
    • /
    • pp.69-74
    • /
    • 2013
  • Silicon (Si) wafer was grown by using direct growth from Si melt and contaminations of wafer during the process were investigated. In our process, BN was coated inside of all graphite parts including crucible in system to prevent carbon contamination. In addition, coated BN layer enhance the wettability, which ensures the favorable shape of grown wafer by proper flow of Si melt in casting mold. As a result, polycrystalline silicon wafer with dimension of $156{\times}156$ mm and thickness of $300{\pm}20$ um was successively obtained. There were, however, severe contaminations such as BN and SiC on surface of the as-grown wafer. While BN powders were easily removed by brushing surface, SiC could not be eliminated. As a result of BN analysis, C source for SiC was from binder contained in BN slurry. Therefore, to eliminate those C sources, additional flushing process was carried out before Si was melted. By adding 3-times flushing processes, SiC was not detected on the surface of as-grown Si wafer. Polycrystalline Si wafer directly grown from Si melt in this study can be applied for the cost-effective Si solar cells.

Dynamic Characteristics of Metal-induced Unilaterally Crystallized Polycrystalline Silicon Thin-film Transistor Devices and Circuits Fabricated with Precrystallization (선결정화법을 이용한 금속 유도 일측면 결정화에 의해 제작된 다결정 실리콘 박막 트랜지스터 소자 및 회로의 전기적 특성 개선 효과)

  • Hwang, Wook-Jung;Kang, Il-Suk;Kim, Young-Su;Yang, Jun-Mo;Ahn, Chi-Won;Hong, Soon-Ku
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.461-465
    • /
    • 2008
  • The phase transformation in a film influences its surrounding. Effects of the precrystallization method, which removes influences on gate oxide caused by lateral crystallization, in metal-induced unilaterally crystallized polycrystalline silicon thin-film transistor devices and circuits were studied. Device by the method was shown to have a higher current drive, compared with conventional postcrystallized device. Moreover, we studied DC bias-induced changes in the performance of ring oscillator. PMOS inverters fabricated using precrystallized silicon films have very high dynamic and stable performance, compared with inverters fabricated using postcrystallized silicon films.

Analysis of Electrical Characteristics of Low Temperature and High Temperature Poly Silicon TFTs(Thin Film Transistors) by Step Annealing (스텝 어닐링에 의한 저온 및 고온 n형 다결정 실리콘 박막 트랜지스터의 전기적 특성 분석)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.525-531
    • /
    • 2011
  • In this paper, experimental analyses have been performed to compare the electrical characteristics of n channel LT(low temperature) and HT(high temperature) poly-Si TFTs(polycrystalline silicon thin film transistors) on quartz substrate according to activated step annealing. The size of the particles step annealed at low temperature are bigger than high temperature poly-Si TFTs and measurements show that the electric characteristics those are transconductance, threshold voltage, electric effective mobility, on and off current of step annealed at LT poly-Si TFTs are high more than HT poly-Si TFT's. Especially we can estimated the defect in the activated grade poly crystalline silicon and the grain boundary of LT poly-Si TFT have more high than HT poly-Si TFT's due to high off electric current. Even though the size of particles of step annealed at low temperature, the electrical characteristics of LT poly-Si TFTs were investigated deterioration phenomena that is decrease on/off current ratio depend on high off current due to defects in active silicon layer.