DOI QR코드

DOI QR Code

Mobility Enhancement in Polycrystalline Silicon Thin Film Transistors due to the Dehydrogenation Mechanism

  • Received : 2017.11.14
  • Accepted : 2018.06.19
  • Published : 2018.11.15

Abstract

We investigated the mechanism of mobility enhancement after the dehydrogenation process in polycrystalline silicon (poly-Si) thin films. The dehydrogenation process was performed by using an in-situ CVD chamber in a $N_2$ ambient or an ex-situ furnace in air ambient. We observed that the dehydrogenated poly-Si in a $N_2$ ambient had a lower oxygen concentration than the dehydrogenated poly-Si annealed in an air ambient. The in-situ dehydrogenation increased the (111) preferred orientation of poly-Si and reduced the oxygen concentration in poly-Si thin films, leading to a reduction of the trap density near the valence band. This phenomenon gave rise to an increase of the field-effect mobility of the poly-Si thin film transistor.

Keywords

References

  1. T. Tsujimura, W. Zhu, S. Mizukoshi, N. Mori, K. Miwa, S. One, Y. Maekawa, K. Kawabe and M. Kohno, SID 38, 84 (2007). https://doi.org/10.1889/1.2785232
  2. A. Nathan, G. R. Chaji and S. J. Ashtiani, J. Dis. Technol. 1, 267 (2005). https://doi.org/10.1109/JDT.2005.858913
  3. C. L. Lin, IEEE Electron Dev. Lett. 28, 129 (2007). https://doi.org/10.1109/LED.2006.889523
  4. J. H. Lee, W. J. Nam, B. K. Kim, H. S, Choi, Y. M. Ha and M. M. Han, IEEE Electron Dev. Lett. 27, 830 (2006). https://doi.org/10.1109/LED.2006.883056
  5. J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao and H. H. Lee, SID 12, 367 (2004).
  6. S. K. Hong, B. K. Kim and Y. M. Ha, SID 38, 1366 (2007). https://doi.org/10.1889/1.2785567
  7. S. H. Jung, H. K. Lee, C. Y. Kim, S. Y. Yoon, C. D. Kim and I. B. Kang, SID 39, 101 (2008). https://doi.org/10.1889/1.3069305
  8. M. K. Hatalis and D. W. Greeve, J. Appl. Phys. 63, 2260 (1988). https://doi.org/10.1063/1.341065
  9. M. W. Ma, T. Y, Chiang, T. S. Chao and T. F. Lei, Semicond. Sci. Technol. 24, 072001 (2009). https://doi.org/10.1088/0268-1242/24/7/072001
  10. S-W. Lee and S-K. Joo, IEEE Electron Dev. Lett. 17, 4, (1996). https://doi.org/10.1109/55.475559
  11. M. A. Crowder, P. G. Carey, P. M. Smith, R. S. Sposili, H. S. Cho and J. S. Im, IEEE Electron Dev. Lett. 19, 8 (1998).
  12. A. T. Voutsas, A. M. Marmorstein and R. Solanki, J. Electrochem. Soc. 146, 3500 (1999). https://doi.org/10.1149/1.1392504
  13. M. Yazakis, S. Takenaka and H. Ohshima, Jpn. J. Appl. Phys. 31, 206 (1992). https://doi.org/10.1143/JJAP.31.206
  14. K. C. Moon, J-H. Lee and M-K. Han, IEEE Trans. Electrons Dev. 52, 512 (2005). https://doi.org/10.1109/TED.2005.844740
  15. C. Chen, K. Abe, H. Kumoni and J. Kanicki, IEEE Trans. Electrons Dev. 56, 1177 (2009). https://doi.org/10.1109/TED.2009.2019157
  16. R. Martel, Ph. Avouris and I-W. Lyo, Science 272, 385 (1996). https://doi.org/10.1126/science.272.5260.385
  17. A. Feltz, U. Memmert and R. J. Behm, Chem. Phys. Lett. 192, 271 (1992). https://doi.org/10.1016/0009-2614(92)85464-L
  18. B. Mereu, C. Rossel, E. P. Gusev and M. Yang, J. Appl. Phys. 100, 014504 (2006). https://doi.org/10.1063/1.2210627
  19. L. Chang, M. Ieong and M. Yang, IEEE Trans. Electron Dev. 51, 1621 (2004). https://doi.org/10.1109/TED.2004.834912