• 제목/요약/키워드: Polya 문제해결

Search Result 27, Processing Time 0.021 seconds

The Effects of Writing activities Based on Polya's Problem solving Stages on Learning Accomplishment and Attitudes (Polya의 문제해결 단계에 따른 쓰기 활동이 학업성취도와 수학적 태도에 미치는 영향)

  • Lee, Jeong Hye;Ahn, Byoung Gon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.1
    • /
    • pp.87-103
    • /
    • 2013
  • This study was investigated to examine the effects of writing activities based on Polya's Problem Solving Stages on Learning Accomplishment and Attitudes. A total of 54 students were selected from two Grade 6 classes of P Elementary School in G City to form an experimental group(n=27) and a control group (n=27). The experimental group was applied to a class which was creating writing activities according to Polya's Problem Solving Stages to problem solving and inquiry activities. The control group was taught by the traditional method to the same activities. The five questions for each area were selected as a descriptive assessment of the second semester of Grade 5 in the area of the Academic Achievement pre-test, developed by the G Education and Science Research. The post-test was selected by a descriptive assessment of the content of the first semester in Grade 6. The same questions were posed for both the pre-test and the post-test of the Mathematical Attitudes assessment. We examined the pre-test at the beginning of the school term, then the students were re-examined after one semester, using the same questions as the pre-test. This research showed that there was a meaningful difference in Learning Accomplishment as a result of T-test in the 5% level of significance. Secondly, there was a meaningful difference in the Mathematical Attitudes as a result of T-tests. It shows that writing activities based on Polya's Problem Solving Stages have an influence on improving Learning Accomplishment and Attitudes.

  • PDF

Polya의 문제해결 전략을 이용한 효과적인 문장제 지도방안 -고등학교 중심-

  • Bang, Seung-Jin;Lee, Sang-Won
    • Communications of Mathematical Education
    • /
    • v.8
    • /
    • pp.209-229
    • /
    • 1999
  • 보통 문장제(거리 ${\cdot}$ 속도 문제, 시계 문제, 농도 문제, 개수 세기, 측도 영역)는 초등학교부터 반복하면서 대학수학능력 시험에서는 외적 문제해결력을 측정하는 문장으로 나타난다. 문장제를 해결하는데는 사고가 여러 단계로 이루어져야 한다. 따라서 일반적으로 문장제는 난해하므로 조직적이고 전문적인 학습지도가 이루어져야 한다. 하지만 입시위주의 교육 등 여러 여건상 잘 이루어지지 않고 있는 것이 현실이다. 수학을 잘하는 학생이라도 문장제를 해결하지 못하는 경우가 많다. 본 연구에서는 문장제의 해결의 저해 요인을 완화시킬 수 있는 지도 방안으로서 Polya의 문제해결 전략을 이용하며, 실험반과 비교반의 학습 효과를 비교 분석하여 이를 통하여 효율적인 문장제 지도방안을 연구한다.

  • PDF

The Effect of Polya's Heuristics in Mathematical Problem Solving of Mild Disability Students (경도장애 학생들의 수학적 문제해결을 위한 폴리아의 전략 효과 연구)

  • Han, Kyung-Hwa;Kim, Young-Ok
    • East Asian mathematical journal
    • /
    • v.32 no.2
    • /
    • pp.253-289
    • /
    • 2016
  • This study attempted to figure out new teaching method of mathematics teaching-learning by applying Polya's 4-level strategy to mild disability students at the H Special-education high school where the research works for. In particular, epilogue and suggestion, which Polya stressed were selected and reconstructed for mild disability students. Prior test and post test were carried by putting the Polya's problem solving strategy as independent variable, and problem solving ability as dependent variable. As a result, by continual use of Polya's program in mathematics teaching course, it suggested necessary strategies to solve mathematics problems for mild disability students and was proven that Polya's heuristic training was of help to improve problem solving in mathematics.

Polanyi's Epistemology and the Tacit Dimension in Problem Solving (폴라니의 인식론과 문제해결의 암묵적 차원)

  • Nam, Jin-Young;Hong, Jin-Kon
    • Journal for History of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.113-130
    • /
    • 2009
  • It can be said that the teaching and learning of mathematical problem solving has been greatly influenced by G. Polya. His heuristics shows down the explicit process of mathematical problem solving in detail. In contrast, Polanyi highlights the implicit dimension of the process. Polanyi's theory can play complementary role with Polya's theory. This study outlined the epistemology of Polanyi and his theory of problem solving. Regarding the knowledge and knowing as a work of the whole mind, Polanyi emphasizes devotion and absorption to the problem at work together with the intelligence and feeling. And the role of teachers are essential in a sense that students can learn implicit knowledge from them. However, our high school students do not seem to take enough time and effort to the problem solving. Nor do they request school teachers' help. According to Polanyi, this attitude can cause a serious problem in teaching and learning of mathematical problem solving.

  • PDF

창의적 수학문제해결력 검사도구의 요소

  • Yu, Yun-Jae
    • Communications of Mathematical Education
    • /
    • v.17
    • /
    • pp.159-168
    • /
    • 2003
  • 본 연구는 창의적 수학문제해결력의 검사도구의 요소들을 제시하고 있다. 수학적 창의성을 과정적 관점에서 출발하여 수학적 창의성을 창의적 수학문제제해결과 동일시하고 그에 따른 검사도구의 기본요소들을 Polya의 문제해결기법에서 나타나는 메타인지적 전략과 수학적 마인드를 검사하는 요소들로 구성하였다.

  • PDF

A Study on the Improvement of Problem-solving in Elementary Mathematics Textbooks - Focusing on Polya's Problem Solving - (초등 수학 교과서에서 문제해결 지도의 개선점과 개선 방향 -Polya의 문제해결을 중심으로-)

  • Ahn, Byounggon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.4
    • /
    • pp.405-425
    • /
    • 2018
  • Increasing the problem solving power in school mathematics is the most important task of mathematics education. It is the ultimate goal of mathematics education to help students develop their thinking and creativity and help solve problems that arise in the real world. In this study, we investigated the contents of problem solving according to mathematics curriculum goals from the first curriculum to current curriculum in Korea. This study analyzed the problem-solving contents of the mathematics textbooks reflecting the achievement criteria of the revised curriculum in 2015. As a result, it was the first curriculum to use the terminology of problem solving in the mathematics goal of Korea's curriculum. Interest in problem solving was most actively pursued in the 6th and 7th curriculum and the 2006 revision curriculum. After that, it was neglected to be reflected in textbooks since the 2009 revision curriculum, We have identified the problems of this problem-solving instruction and suggested improvement direction.

  • PDF

Exemplary Teachers' Teaching Strategies for Teaching Word Problems (숙련된 교사의 문장제 문제해결 지도 전략 - 미국 교사들을 중심으로)

  • Lee, Kwang-Ho;Shin, Hyun-Sung
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.4
    • /
    • pp.433-452
    • /
    • 2009
  • This study investigated the teaching strategies of two exemplary American teachers regarding word problems and their impact on students' ability to both understanding and solving word problems. The teachers commonly explained the background details of the background of the word problems. The explanation motivated the students' mathematical problem solving, helped students understand the word problems clearly, and helped students use various solving strategies. Emphasizing communication, the teachers also provided comfortable atmosphere for students to discuss mathematical ideas with another. The teachers' continuous questions became the energy for students to plan various problem solving strategies and reflect the solutions. Also, this research suggested a complementary model for Polya's problem solving strategies.

  • PDF

A Study on Student's Processes of Problem Solving Using Open-ended Geometric Problems in the Middle School (중학교 기하단원의 개방형문제에서 학생의 문제해결과정의 사고 특성에 관한 연구)

  • ChoiKoh, Sang-Sook;Noh, Ji-Yeon
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.3
    • /
    • pp.303-322
    • /
    • 2007
  • This study is to investigate student's processes of problem solving using open-ended Geometric problems to understand student's thinking and behavior. One 8th grader participated in performing her learning in 5 lessons for June in 2006. The result of the study was documented according to Polya's four problem solving stages as follows: First, the student tended to neglect the stage of "understanding" a problem in the beginning. However, the student was observed to make it simplify and relate to what she had teamed previously Second, "devising a plan" was not simply done. She attempted to solve the open-ended problems with more various ways and became to have the metacognitive knowledge, leading her to think back and correct her errors of solving a problem. Third, in process of "carrying out" the plan she controled her solving a problem to become a better solver based on failure of solving a problem. Fourth, she recognized the necessity of "looking back" stage through the open ended problems which led her to apply and generalize mathematical problems to the real life. In conclusion, it was found that the student enjoyed her solving with enthusiasm, building mathematical belief systems with challenging spirit and developing mathematical power.

  • PDF

대학수학에서 문제해결지도

  • Jeong, Chi-Bong
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.207-214
    • /
    • 2003
  • 수학교육에서 학생들이 학습을 통하여 습득하여할 중요한 주제는 수학 지식과 수학을 다루는 인지적 조작 기술일 것이다. 특히 수학지식과 지식의 활용은 문제해결을 통한 학습에서 의미 있게 학생에게 나타나며 이를 통하여 수학 학습 동기를 강화하고 수학의 가치를 느끼게 한다는 점에서 중요한 의의를 갖는다. 대학수준의 수학교육과정에서도 문제해결은 중요한 수학교육의 중심 수단으로서 목적으로서 선언되어 있지만 실제 수업에서 잘 다루고 있지 못하다. 문제해결 지도에 대한 접근 방식으로 1950년대의 문제해결전략을 다룬 Polya, 1990년대의 메타인지적 접근을 강조한 Schoenfeld 및 최근의 여러 연구자들의 활발한 연구가 이어지고 있다. 본 논문에서 대학 수준의 문제해결 수업의 접근 방법을 소개함으로 문제해결 수업을 구현할 수 있는 지식을 제공한다. 특히 Schoenfeld의 문제해결 수업 모델은 수학 교육의 교실 수업으로의 구현 측면에서 갖는 다양한 함의를 제시한다.

  • PDF

소집단 토의학습을 통한 Polya의 문제해결 전략을 이용한 문장제 지도방안 - 중학교 중심-

  • Bang, Seung-Jin;Lee, Sang-Won;Hwang, Dong-Ju
    • Communications of Mathematical Education
    • /
    • v.11
    • /
    • pp.201-233
    • /
    • 2001
  • 보통 문장제(일량, 거리, 속도 문제, 시계 문제, 농도 문제, 개수 세기, 측도 영역)는 초등학교부터 반복하며 나오며 대학 수학 능력 시험에서는 외적 문제 해결능력으로 측정되기도 한다. 문장제를 해결하는데는 사고가 여러 단계로 이루어져야 한다. 따라서 일반적으로 문장제는 난해하므로, 조직적이고 전문적인 학습지도가 이루어져야 한다. 하지만 입시위주의 교육 등 여러 여건상 잘 이루어지지 않고 있는 것이 현실이다. 본 연구에서는 문장제의 문제 해결에 필요한 해결요소를 발견하고 저해 요인을 없앨 수 있는 지도 방안으로서 소집단 토의학습에 문제해결 전략을 이용하여, 효율적인 문장제 지도 방안을 연구하고 상이한 문제에 접근하는 방법, 문제를 이용하는 방법 등을 토의학습을 통하여 다양한 풀이방법을 해결하면서 이를 통하여 사고력을 신장할 수 있도록 연구한다.

  • PDF