• Title/Summary/Keyword: Poly (3,4-ethylenedioxythiophene)

Search Result 148, Processing Time 0.037 seconds

Preparation of Antistatic Coating Solutions by Blending Aniline Terminated Waterborne Polyurethane with PEDOT/PSS (Aniline Terminated Waterborne Polyurethane과 PEDOT/PSS의 블렌딩에 의한 대전방지 코팅용액의 제조)

  • Hong, Min Gi;Huh, Woo Young;Byun, Tae Gang;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.614-620
    • /
    • 2012
  • Polyurethane prepolymers were prepared from poly (carbonate diol), isophrone diisocyanate and dimethylol propionic acid. Then, aniline terminated waterborne polyurethane dispersion (ATPUD) was synthesized by capping the NCO group of the prepolymer with aniline monomer. Subsequently, ATPUD and waterborne polyurethane dispersion (PUD), respectively, were blended with conducting polymer, poly (3,4-ethylenedioxythiophene)/polystyrene sulfonate [PEDOT/PSS], to yield antistatic coating solutions, and the mixture was coated on the polycarbonate substrates. At adequate addition amounts of PEDOT/PSS less than or equal to 2.5 g, the surface resistances ($1.0{\times}10^{11}{\sim}2.5{\times}10^8{\Omega}/cm^2$) of coating films from ATPUD showed better electronic conductivities than those ($5.0{\times}10^{11}{\sim}6.3{\times}10^9{\Omega}/cm^2$) from PUD. However, at excess amount of PEDOT/PSS of 3.0 g, the surface resistance from ATPUD showed similar electronic conductivity with that from PUD.

Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide (산화 그래핀에 의한 EDOT의 산화중합에 관한 연구)

  • Kim, Min Chae;Park, Min Ui;Park, No Il;Lee, Seul Bi;Lee, Seong Min;Yang, So Yeon;Choi, Jong Hyuk;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.45-49
    • /
    • 2016
  • In the presence of poly(4-styrene sulfonate) (PSS) and excess amount of graphene oxide (GO), we conducted in-situ polymerization of 3,4-ethylenedioxythiophene (EDOT) without an oxidant. XPS and IR spectroscopies of the product (GO-P) showed that PEDOT/PSS was successfully synthesized by oxidative polymerization of EDOT and hybridized with GO. GO-P displayed a stable aqueous suspension, however, the high content (42%) of GO in GO-P diminished electrical conductivity down to $15S{\cdot}m^{-1}$. Annealing of GO-P films at $200^{\circ}C$ for 8 hr induced partial reduction of GO and finally enhanced electrical conductivity up to $212S{\cdot}m^{-1}$.

Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer (수용성 고분자로 Wrapping된 그래핀 치환체와 PEDOT/PSS 복합체의 합성 및 특성)

  • Park, No Il;Lee, Seul Bi;Lee, Seong Min;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.581-585
    • /
    • 2014
  • We conducted investigation on the hybridization of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT : PSS) with graphene derivative (G-PSS), which has been prepared by wrapping reduced graphene oxide (RGO) with PSS. In situ polymerization of PEDOT/PSS in the presence of G-PSS afforded the PEDOT/PSS and graphene hybrid (GP). The analysis of XPS, IR and Raman spectroscopies for GP showed that PEDOT/PSS was successfully synthesized and hybridized with graphene. Compared to the G-PSS, GP showed an enhanced electrical conductivity of $4.46{\times}10^2S/m$ with a good wter-dispersity.

Simple Patterning Techniques for fabrication of Organic Thin Film Transistors

  • Jo, Sung-Jin;Kim, Woo-Jin;Kim, Chang-Su;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1273-1275
    • /
    • 2005
  • The influence of oxygen plasma and octadecyltrichlorosilane (OTS) treatment of $SiO_2$ on the patterning of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT:PSS) is presented. A significant difference in surface energies between plasma treated and OTS treated $SiO_2$ was noted. Such heterogeneous surface energy guides PEDOT:PSS to wet and spread on the wettable region and to dewet and retract from other regions.

  • PDF

A Study on Improving Electrical Conductivity for Conducting Polymers and their Applications to Transparent Electrodes (전도성 고분자의 전기전도도 향상 연구 및 이를 이용한 투명전극 응용)

  • Im, Soeun;Kim, Soyeon;Kim, Seyul;Kim, Felix Sunjoo;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.640-647
    • /
    • 2015
  • As the need for next-generation flexible electronics grows, novel materials and technologies that can replace conventional indium tin oxide (ITO) for transparent electrodes have been of great interest. Among them, a conducting polymer, especially poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) is one of the most promising candidates because it is mechanically flexible, inexpensive, and capable of being processed in solution. Currently, there are a lot of research efforts on enhancing its electrical conductivity to the level of ITO or metal electrodes through chemical and/or physical processing. In this review article, we present various additives and pre-/post-deposition processing methods for improving the electrical conductivity of PEDOT : PSS. Some of representative reports are also introduced, which demonstrated the use of conductivity-enhanced PEDOT : PSS as transparent electrodes in electronics and energy conversion.

DC conduction mechanism of PEDOT by adding organic solvents (PEDOT 합성시 유기용매 첨가에 따른 DC 전기전도 메카니즘)

  • Park, Chang-Mo;Kim, Tae-Young;Kim, Youn-Sang;Kim, Jong-Eun;Suh, Kwang-S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1709-1711
    • /
    • 2004
  • 3,4-ethylenedioxythiophene(EDOT)을 ferric-toluenesulfonate(FTS)로 doping하여 합성하였다. 이때 다양한 유기용매를 함께 첨가하여 합성하였고, 온도에 따른 각각의 DC 전도도를 측정하였다. FTS로 dofing된 poly(3,4-ethylenedioxythiophene) (PEDOT)는 3-D variable range hopping model을 잘 따르며, alcohol류의 용매와 함께 합성한 경우는 상온의 DC 전도도가 2 S/cm로 0.4 S/cm의 reference 보다 전기전도를 증가시키는 반면, ketone류는 약 $10^{-11}$ S/cm로 전기전도를 감소시키는 경향을 보였다. 전도도의 증감과 doping level의 관계를 규명하기 위하여 X-ray 분석을 하였다.

  • PDF

Electrical characteristics of p-PEDOT/n-GZO heterojunction (p-PEDOT/n-GZO heterojunction의 전기적 특성)

  • Lee, Jae-Sang;Park, Dong-Hoon;Koo, Sang-Mo;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1332_1333
    • /
    • 2009
  • The electrical properties of an inorganic/organic heterojunction has been investigated by spin coating the p-type polymer poly(3,4 ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT:PSS) on an n-type gallium doping zinc oxide (GZO) film. Current-voltage (I-V) characteristics of the fabricated heterojunction diodes have a good rectifying characteristics. The barrier height is calculated 0.8 eV.

  • PDF

Preparation of Conductive Leather Gloves for Operating Capacitive Touch Screen Displays (정전용량방식 터치스크린에 작동하는 전도성 가죽장갑 소재의 제조)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.1018-1023
    • /
    • 2012
  • Smartphone is integrated into the daily lives of all types of people not even young generation. A touch screen display is a primary input device of a smart phone, a tablet computer, etc. While there are many tough technologies in existence, resistive and capacitive are dominant and currently lead the touch screen panel industry. And a capacitive touch screen panel widely used in smart phones is coated with a material that stores electrical charges. In this study, we tried to manufacture gloves produced with electro-conducting leather as a tool to operate a touch panel screen. Therefore, electrically conductive materials, Polyaniline(PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), and Carbon nanotubes (CNT) were applied to the surface of leather to be used as a touching operator for capacitive touch screen panel. The leather samples were treated by simple painting method; firstly, they were painted with aqueous solution containing each of the electrically conductive materials and then dried. This cycle was repeated three times. Consequently, the treated leather samples showed electrical conductivity and reasonable working performance to the capacitive touch screen. And, PANI showed the best performance and highest electrical conductivity, and then PEDOT and, CNT in decreasing order. This is because the solubilities of PANI and PEDOT show higher than dispersibility of CNT. Thus, the concentration of conducting polymers was greater than that of CNT in the treating solutions.