• Title/Summary/Keyword: Point A dose

Search Result 573, Processing Time 0.028 seconds

A Study on the Behavior of the Free Space Scatter dose in X-ray Diagnostic Room (X선촬영실 내에서의 공간산란선량 변동에 관한 연구)

  • Oh, Hyun-Joo;Kim, Sung-Soo;Kim, Young-Il;Lim, Han-Young;Kim, Heung-Tae;Lee, Who-Min;Kim, Hak-Sung;Lee, Sang-Suk
    • Journal of radiological science and technology
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 1994
  • In this pauper, when the X-ray exposure condition is 70, 90, 110 kV, 10 mAs, FFD 180 cm, FSO $10{\times}10$, $35{\times}35\;cm$, toward the $36{\times}36{\times}15\;cm$ acryl phantom, the free space scatter dose rate at the 15th points in X-ray diagnostic room was measured by electrometer and 1800 co ionization chamber. Therefore, the free space scatter dose distribution profile was drown, and then, the free space scatter dose contribution percentage was Investigated. The obtained results are summarized as following. 1. The X-ray tube leakage dose rate of the experiment generator at the 1 m from focus was measured maximum 85 mR/hr, minimum 20 mR/hr, therefore, this values was appeared below the KS rules, 2. The free space scatter dose become to larger at the primary X-ray beam around area, and lower at the back ward X-ray tube. The maximum values were 3,812 mR/hr at the front Lt 1 m $45^{\circ}$ point, minimum 117 mR/hr at the back ward 1 m $180^{\circ}C$ point. 3. As the more tube voltage and field size increase, the more free space scatter dose contribution percentage become to increase, as to 90 kV from 70 kV, increase to 12 %, to 110 kV from 90 kV, increase to 18 %, and then, become to 11 % at the $10{\times}10\;cm$ and 87 % at the $35{\times}35\;cm$. 4. The 89 % of the total producted scatter ray occured from acryl phantom, at the X-ray tube housing 6 %, at the front side back wall 5 %. 5. The free space scatter dose contribution percentage at the one point build up 80 % from the phanton direction, 14 % from the X-ray tube and collimator direction, 2.2 % from the front wall, 1.8 % from the side wall, 1.7 % the back wall.

  • PDF

Comparative Analysis of Treatment Planning System and Dose Distribution of Gamma knife PerfexionTM using EBT-3 Film (EBT-3 필름을 사용한 감마나이프 퍼펙션TM의 치료 계획 시스템 및 선량 분포 비교 분석)

  • Jin, Seongjin;Kim, eongjin;Seo, Weonseop;Hur, Beongik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.509-515
    • /
    • 2017
  • The purpose of this study is to measure the 3 dimensional dose distribution of Gamma knife $Perfection^{TM}$, make a comparative analysis of the result and establish the measurement method for the procedures using EBT3 film. The dose distributions of the Gamma knife $Perfection^{TM}$ installed in two hospitals were evaluated in accuracy and precision. For accuracy, the difference between the mechanical center axis and the dose center axis was assessed on a 4 mm collimator. The allowed difference in accuracy is within 0.3 mm and it was measured as 0.098 mm, 0.195 mm for A hospital and 0.229 mm, and 0.223 mm for B hospital. For precision the difference between the FWHM(Full Width at Half Maximum) of Gamma Plan and measurement in the 4, 8, and 16 mm collimators was calculated. The allowed difference in precision is less than ${\pm}1mm$. The value of the hospital A was -0.283 ~ 0.583 mm, and the hospital B was -0.857 ~ 0.810 mm. When analyzing the dose distributions using the image-j program, it is necessary to establish a clearer reference point of the measurement point, and it is considered that the comparison of the dose distribution should be performed in actual treatment irradiation dose with a high dose usable film.

Perturbation of Dose Distributions for Air Cavities in Tissue by High Energy Electron (고(高) 에너지 전자선(電子線) 치료시(治療時) 체내(體內) 공동(空洞)으로 인(因)한 선량분포(線量分布)의 변동(變動))

  • Chu, S.S.;Lee, D.H.;Choi, B.S.
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.22-30
    • /
    • 1976
  • The perturbation of dose distribution adjacent to cavities in high energy electron has shown that the percentage of dose increase varies markedly as a function of the build-up layer, the length and thickness of the cavities, and the electron energy. The dose distribution showed that cavities similar in size to those encountered in the head and neck measured by industrial film dosimetry and corrected by ionization chambers. The most increased doses by measuring are resulted in a localized dose of up to 130% of that measured at the depth of maximum dose within a homogeneous tissue equivalent phantom. The measured values and correction factors of dose perturbation due to air cavities showed in diagrams and would be summarized as follows. 1. In $8{\sim}12MeV$ electron beams, the most marked dose is observed when the build-up layer thickness is 0.5cm and cavity volume is $2{\times}2{\times}2cm^3$. 2. The highest dose point is located under cavity when the energy is increased and cavity length is longer. 3. The cavity length at which the maximum percentage dose occurs decreases with increasing energy. 4. The highest percentage cavity doses are obtained when the energy is high, the build-up layer is thin, the thickness of the cavity is large, and the length of the cavity is approximately 1 to 3cm. 5. The doses of upper portion of cavity are less than the standard dose distribution as 5 to 10%. 6. The maximum range of electron beam are extended as much as thickness of cavity. 7. A cavity having a length of 5cm closely approximates a cavity of infinite length.

  • PDF

Relationship between UV-induced MED and Perfusion Value Assessed by Laser Doppler Perfusion Imager (Laser Doppler Perfusion Imager (LDPI)로 측정한 자외선 조사부위의 혈류량과 최소 홍반량(MED)과의 상관관계)

  • Kim, Nam-Soo;Lee, Kyung-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.3 s.52
    • /
    • pp.259-263
    • /
    • 2005
  • The aim of the present study is to evaluate relationship between UV-induced MED and perfusion value assessed by Laser Doppler Perfusion Imager. In this study, A increasing linear relationship is seen between perfusion and dose (p<0.05). The dose-response curve show a steep slope in the case of lower MED values group after MED point, For higher MED group, increase with a gentle slope.

Effects of Recombinant truman Granulocyte Colony-Stimulating Factor(rhG-CSF) on Cyclophosphamide-induced Neutropenic Mice (호중구 감소증을 유도한 마우스에서의 유전자 재조합 인과립구 콜로니자극인자의 효과)

  • 조명행;유아선;방명주;곽형일;성하정;안길환
    • Biomolecules & Therapeutics
    • /
    • v.6 no.2
    • /
    • pp.145-150
    • /
    • 1998
  • Administration of 3 type KGCs [recombinant human granulocyte colony-stimulating factor (rhG-CSF)] to mice with cyclophosphamide (CPA)-induced neutropenia for 4 consecutive days from the day after the CPA dosing (100 mg/kg) resulted in a dose dependent increase in the peripheral blood neutrophil count 6 hours after the final KGC injection. Within the KGC dose range of 0.1 to 40$\mu$g Per mouse Per day, there was a sigmoidal relationship between the logarithm of the dose and the peripheral blood neutrophil count (relative value for neutrophil count of the basal dose) in the treated mice. The sigmoidal relationship of test KGC preparations shows that there is a saturation point in terms of efficacy. Compared with e(fact of KGC-Orange, Green, and Blue, KGC-Orange recovers neutrophils more effectively than the others do.

  • PDF

The Study on the Effect of Target Volume in DQA based on MLC log file (MLC 로그 파일 기반 DQA에서 타깃 용적에 따른 영향 연구)

  • Shin, Dong Jin;Jung, Dong Min;Cho, Kang Chul;Kim, Ji Hoon;Yoon, Jong Won;Cho, Jeong Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.53-59
    • /
    • 2020
  • Purpose: The purpose of this study is to compare and analyze the difference between the MLC log file-based software (Mobius) and the conventional phantom-ionization chamber (ArcCheck) dose verification method according to the change of target volume. Material and method: Radius 0.25cm, 0.5cm, 1cm, 2cm, 3cm, 4cm, 5cm, 6cm, 7cm, 8cm, 9cm, 10cm with a Sphere-shaped target Twelve plans were created and dose verification using Mobius and ArcCheck was conducted three times each. The irradiated data were compared and analyzed using the point dose error value and the gamma passing rate (3%/3mm) as evaluation indicators. Result: Mobius point dose error values were -9.87% at a radius of 0.25cm and -4.39% at 0.5cm, and the error value was within 3% at the remaining target volume. The gamma passing rate was 95% at a radius of 9cm and 93.9% at 10cm, and a passing rate of more than 95% was shown in the remaining target volume. In ArcCheck, the average error value of the point dose was about 2% in all target volumes. The gamma passing rate also showed a pass rate of 98% or more in all target volumes. Conclusion: For small targets with a radius of 0.5cm or less or a large target with a radius of 9cm or more, considering the uncertainty of DQA based on MLC log files, phantom-ionized DQA is used in complementary ways to include point dose, gamma index, DVH, and target coverage. It is believed that it is desirable to verify the dose delivery through a comprehensive analysis.

Pelvic MRI Application to the Dosimetric Analysis in Brachytherapy of Uterine Cervix Carcinoma (자궁경부암의 강내조사치료에 있어서 흠수선량평가시 골반강 자기공명사진의 응용)

  • Chung, Woong-Ki;Nah, Byung-Sik;Ahn, Sung-Ja
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.57-64
    • /
    • 1997
  • Purpose : Before we report the results of curative radiotherapy in cervix cancer patients, we review the significance and safety of our dose specification methods in the brachytherapy system to have the insight of the potential Predictive value of doses at specified points. Matersials and Methods : We analyze the 리5 cases of cervix cancer patients treated with intracavitary brachytherapy in the lateral simulation film we draw the isodose curve and observe the absorbed dose rate of point A, the reference point of bladder(SBD) and rectum(SRD). In the sagittal view of Pelvic MRI film we demarcate the tumor volume(TV) and determine whether the prescription dose curve of point A covers the tumor volume adequately by drawing the isodose curve as correctly as possible. Also we estimate the maximum Point dose of bladder(MBD) and rectum(MRD) and calculate the inclusion area where the absorbed dose rate is higher than that of point A in the bladder(HBV) and rectum(HRV), respectively. Results : Of forty-five cases, the isodose curve of point A seems to cover tumor volume optimally in only 24(53%). The optimal tumor coverage seems to be associated not with the stage of the disease but with the tumor volume. There is no statistically significant association between SBD/SRD and MBD/MRD, respectively. SRD has statistically marginally significant association with HRV, while TV has statistically significant association with HBV and HRV. Conclusion : Our current treatment calculation methods seem to have the defect in the aspects of the nonoptimal coverage of the bulky tumor and the inappropriate estimation of bladder dose. We therefore need to modify the applicator geometry to optimize the dose distribution at the position of lower tandem source. Also it appears that the position of the bladder in relation to the applicators needs to be defined individually to define 'hot spots'.

  • PDF

The Usefulness of Bolus of Radiation Therapy in Patients with Whole Breast Cancer

  • Min, Jung-Whan;Son, Jin-Hyun;Park, Hoon-Hee;Dong, Kyung-Rae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.3
    • /
    • pp.99-103
    • /
    • 2011
  • Radiation Therapy has been used in the treatment of breast cancer for over 80 years. Technically, it should include a part or all of such areas as chest wall or breast, axilla, internam mammary nodes and supraclavicular nodes. The purpose of this study is treated breast cancer patient to use 6 MV, 10 MV with bolus so that we observe changing of skin dose and evaluate those usefulness. Using woman's phantom, after CT simulate scanning, Through RTP system to make treatment plan, select three any place. And then, we measure that dose rate. After moving the phantom to linac, we put for TLD to three point same as RTP system which we put on the phantom. We exposed 6 MV, 10 MV with bolus and without so that it is measured dose by TLD device(4000 Harshaw). As a reult expose 6 MV,10 MV, it differences 10%, 15% according to bolus and withoout bolus where lateral point from RAO, LPO beam, other one is 20% where the furthest from both beams. To use bolus in the hospital is material to include closely part at skin among tissue of breast cancer. Acquired skin dose from RTP system is uncertainity. So it has to test another system likely TLD or other dosimetry system. Also exposed field of breast cancer is included inhomogeneity such as lung, bone and so on. Therefore it has to be accomplished a dose calculating of inhomogeneity part from treatment plan.

  • PDF

Bone Density Spatial Distribution of Radiation Dose Measurement (양방사선 골밀도 측정 장치의 공간산란선량분포측정)

  • Kim, Seon-Chil;Won, Do-Yeon;Park, Chang-Hee;Dong, Kyung-Rae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.59-62
    • /
    • 2011
  • In this experiment, how DEXA(Dual-energy X-ray Absorptiometry) bone mineral density was measured using the equipment. In order to maintain the same measurement conditions, bone mineral density measurements of 10 cm thick phantom, with an actual patient at a point when examining the same conditions(100 kVp, 1 mA) and then out to the five doses of radiation and its average was calculated by dividing measured. X-ray dose rate measured at the Research Institute, Sword of the gamma survey meters calibrated MEDCOM Ltd. (Inspector GM counter tube) was used, calibration factor is 1.15. On a horizontal plane around the patient, depending on the distance was significantly reduced dose rate. In addition, orientation $0^{\circ}$ head end was higher in the direction of the highest dose rate, $0^{\circ}$ $180^{\circ}$ direction from the direction towards the higher dose rate reduced to some extent in the direction of all the $120^{\circ}$ were able to identify.

  • PDF

Novel reforming of pyrolized fuel oil by electron beam radiation for pitch production

  • Jung, Jin-Young;Park, Mi-Seon;Kim, Min Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.262-267
    • /
    • 2014
  • Pyrolized fuel oil (PFO) was reformed by novel electron beam (E-beam) radiation, and the elemental composition, chemical bonds, average molecular weight, solubility, softening point, yields, and density of the modified patches were characterized. These properties of modified pitch were dependent on the reforming method (heat or E-beam radiation treatment) and absorbed dose. Aromaticity ($F_a$), average molecular weight, solubility, softening point, and density increased in proportion to the absorbed dose of E-beam radiation, with the exception of the highest absorbed dose, due to modification by free radical polymerization and the powerful energy intensity of E-beam treatment. The H/C ratio and yield exhibited the opposite trend for the same reason. These results indicate that novel E-beam radiation reforming is suitable for the preparation of aromatic pitch with a high ${\beta}$-resin content.