• Title/Summary/Keyword: Plastic Stability

Search Result 604, Processing Time 0.029 seconds

Development and Application of Construction Control System for Excavation (굴착 관리 정보화 시스템의 개발 및 적용)

  • 권오순;정충기;김재관;이해성;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.153-166
    • /
    • 1999
  • Since the reliability of results by the existing analyzing method is low, in the case of for excavation performed in urban area whose stability is of great importance, construction control based on field monitoring is always necessary. But the field monitoring reflects only the behavior of construction process that has already been carried out, and it has limitations in predicting the behavior of the expected construction process, which is practically more important for construction control. In this study, construction control system for excavation which can predict the behavior of the expected processes during construction with high degree of accuracy, is developed by adopting inverse analysis. The inverse analied applied field monitoring results to excavation analysis can improve the reliability of predicted results. The developed system uses an elasto-plastic soil spring model for the excavation analysis and the minimization of least squared errors between measured displacements and calculated displacements for the inverse analysis. All the required processes for construction control can be performed as an integrated work within the system reflecting real time application and user's convenience. Their applicabilitis are confirmed by two case studies.

  • PDF

Stability analysis of closely-spaced tunnel using RFEM (확률유한요소 해석에 의한 근접터널 안정성 분석)

  • Kim, Sang-Gyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2008
  • In this paper, the modeling procedure of random field with an elasto-plastic finite element algorithm and probability of failure on closely-spaced tunnel were investigated. Local average subdivision (LAS) method which can generate discrete random variables fast and accurately as well as change the resolution in certain region was used. And correlated value allocating and weighted average method were suggested to implement geometrical characteristics of tunnel. After the probability of failure on the test problem was thoroughly investigated using random finite element method, the results were compared with the deterministic strength reduction factor method and single random variable method. Of particular importance in this work, is the conclusion that the probability of failure determined by simplified probabilistic analysis, in which spatial variability is ignored by assuming perfect correlation, can be estimated from the safety factor determined by strength reduction factor method. Also, single random variable method can lead to unconservative estimates of the probability of failure.

  • PDF

Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing

  • Lee, Sojeong;Chang, Ilhan;Chung, Moon-Kyung;Kim, Yunyoung;Kee, Jong
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.831-847
    • /
    • 2017
  • Conventional geotechnical engineering soil binders such as ordinary cement or lime have environmental issues in terms of sustainable development. Thus, environmentally friendly materials have attracted considerable interest in modern geotechnical engineering. Microbial biopolymers are being actively developed in order to improve geotechnical engineering properties such as aggregate stability, strength, and hydraulic conductivity of various soil types. This study evaluates the geotechnical engineering shear behavior of sand treated with xanthan gum biopolymer through laboratory direct shear testing. Xanthan gum-sand mixtures with various xanthan gum content (percent to the mass of sand) and gel phases (initial, dried, and re-submerged) were considered. Xanthan gum content of 1.0% sufficiently improves the inter-particle cohesion of cohesionless sands 3.8 times and more (up to 14 times for dried state) than in the untreated (natural) condition, regardless of the xanthan gum gel condition. In general, the strength of xanthan gum-treated sand shows dependency with the rheology and phase of xanthan gum gels in inter-granular pores, which decreases in order as dried (biofilm state), initial (uniform hydrogel), and re-submerged (swollen hydrogel after drying) states. As xanthan gum hydrogels are pseudo-plastic, both inter-particle friction angle and cohesion of xanthan gum-treated sand decrease with water adsorbed swelling at large strain levels. However, for 2% xanthan gum-treated sands, the re-submerged state shows a higher strength than the initial state due to the gradual and non-uniform swelling behavior of highly concentrated biofilms.

Structural characteristics of Zachery treated turquoise (Zachery 처리 터키석의 표면 특성 평가)

  • Kwon, Ki-Ran;Bang, Sin-Young;Park, Jong-Wan;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • The surface characteristics of Zachery-treated turquoise stones have been studied in detail with a comparison of natural and plastic-impregnated turquoise. The SEM-EDS analysis exhibited that Zachery-treated turquoise was characterized by the uniform distribution of potassium element through the specimen and did not show the sharp crystalline $SiO_2$ facet and boundary phase which are common in natural ore. The potassium element shown in the Zachery-treated turquoise seemed to be occurred during the treatment process for the improvement of durability. The bar-shaped crystals observed in the pore was found to be a feature of Zachery treated turquoise and are expected to influence on their stability and durability, while the pore sizes in turquoise stones depends on the parameter of the treatment procedure.

Large Deformation Analysis Using an Anistropic Hardening Constitutive Model : II. Analysis (비등방경화 구성모델을 이용한 대변형 해석 :II. 해석)

  • 전병곤;한성수;오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.215-228
    • /
    • 2002
  • In a companion paper. (Oh, 2002), the constitutive model, called GUX model, was implemented as a user subroutine in ABAQUS code, where the GUX model could describe the behavior of overall strain range. An accuracy analysis verified that the implicit stress integration maintained the accuracy of solutions successfully. Since the GUX model is an anistropic hardening elasto-plastic constitutive model based on total stress concept, geotechnical problems under fully drained or undrained condition can be analyzed after acquisition of stress-strain relationships from drained or undrained triaxial tests. This study includes the analyses of the stability of embankments on soft clays and weathered soils and the example of axially loaded soil-pile system. In the large deformation analyses, geometric nonlinearity was considered and the result of analyses with GUX model was compared with that of Mises model for the overall strain range behavior.

Elasto-Plastic Behaviors of Composite Beam using Shear Connectors installed in Driving Pins (드라이빙핀전용 전단연결재를 이용한 합성보의 탄소성 거동)

  • Yang, Il-Seung;Oh, Young-Ho;Lee, Man-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • The adoption of a composite beam system is regarded as a simple but effective solution because it improves the overall stiffness, strength and stability of the structure by welding shear studs. However, welding shear studs poses problems including electric shock and weld defects. Mechanical methods have emerged as an alternative to metallurgical methods for connecting the H-beam and shear connector. Four specimens were tested in order to compare the structural behavior of the proposed composite beams with that of the classical composite beam given the condition of horizontal loading. With the original composite beam (FCB-SB specimen) using stud bolts, hysteresis loops are stable, but its strength decreased with the crashing of the concrete slab around the column. The suggested composite beams using shear connectors also yielded stable hysteresis loops. Consequently, use of the suggested composite beams instead of the original composite beam are recommended.

Designing and Implementing 3D Virtual Face Aesthetic Surgery System Based on Korean Standard Facial Data (한국 표준 얼굴 데이터를 적용한 3D 가상 얼굴 성형 제작 시스템 설계 및 구현)

  • Lee, Cheol-Woong;Kim, II-Min;Cho, Sae-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.5
    • /
    • pp.737-744
    • /
    • 2009
  • This paper is to study and implement 3D Virtual Face Aesthetic Surgery System which provides more satisfaction by comparing the before-and-after plastic face surgery using 3D face model. For this study, we implemented 3D Face Model Generating System which resembles 2D image of the user based on 3D Korean standard face model and user's 2D pictures. The proposed 3D Virtual Face Aesthetic Surgery System in this paper consists of 3D Face Model Generating System, 3D Skin Texture Mapping System, and Detailed Adjustment System for reflecting the detailed description of face. The proposed system provides more satisfaction to the medical uses and stability in the surgery in compare with other existing systems.

  • PDF

Study on Thermal Pattern and Current Characteristics of an LED Street Lamp (LED 가로등의 발열 패턴 및 전류 특성에 관한 연구)

  • Kim, Hyang-Kon;Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.357-361
    • /
    • 2009
  • This study performed analysis on the thermal pattern and current characteristics of an LED ((Light Emitting Diode) street lamp. It did this using a TVS (Thermal Video System) to analyze the LED street lamp's thermal pattern, and measured its characteristics using an oscilloscope. The ambient temperature and humidity during the experiment were maintained at $24{\pm}2[^{\circ}C]$ and 50~60[%]. The capacity of the LED street lamp was 120[W] and nine sets of modules were arranged at uniform intervals. On one module, 24 LED lamps were arranged in a radial pattern. The analysis of the thermal diffusion pattern at the front of the LED lamp showed that the maximum surface temperature was approximately $34[^{\circ}C]$. In addition, there was almost no change in the temperature of the upper cover, and the temperature at the side showed a uniform thermal diffusion pattern. The surface temperature of the converter converting AC to DC increased to approximately $46[^{\circ}C]$. The analysis results of the thermal characteristics of one LED indicated uniform thermal characteristics for an initial eight minutes. However, the temperature at the center of the LED increased to approximately $82[^{\circ}C]$ after 12 minutes had elapsed. It can be seen from this that the temperature at the center of the LED was higher than the allowable temperature, $70[^{\circ}C]$ of the insulating material for general electrical devices. Therefore, it is necessary to design a lamp in such a way that the plastic insulating material does not come into contact with or get close to the LED lamp. The voltage of the LED lamp converted by the AC/DC converter was measured at DC 27[V] and the current was DC 13[A]. Consequently, it can be seen that in order to secure an adequate light source, it is important to supply a stable current that was greater than the current of other light sources. Therefore, appropriate radiation of heat is required to secure the stability and reliability of the system.

Variation of the structural stability for the sonar dome window in a naval vessel according to the state of the drain valve (소나돔 충, 배수 밸브의 상태에 따른 함정용 소나돔 윈도우의 구조안정도 변화)

  • Han, HyungSuk;Lee, KyungHyun;Park, SeongHo;Lim, YongSoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.844-853
    • /
    • 2014
  • Since the active sonar for a naval vessel is usually installed in a bulbous bow, GRP(Glass reinforced plastic) material with low density and high strength is used for the material of the sonar dome window in order to prohibit impact by slamming wave or foreign material in the sea. The structural safety of the sonar dome is varied according to the interior and exterior distributed pressure on the sonar dome. Therefore, the variation of the structural safety according to the pressure variation of the sonar dome window caused by the drain valve state is studied by CAE.

A new precast wall connection subjected to monotonic loading

  • Vaghei, Ramin;Hejazi, Farzad;Taheri, Hafez;Jaafar, Mohd Saleh;Ali, Abang Abdullah Abang
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2016
  • Final construction project cost is significantly determined by construction rate. The Industrialized Building System (IBS) was promoted to enhance the importance of prefabrication technology rather than conventional methods in construction. Ensuring the stability of a building constructed by using IBS is a challenging issue. Accordingly, the connections in a prefabricated building have a basic, natural, and essential role in providing the best continuity among the members of the building. Deficiencies of conventional precast connections were observed when precast buildings experience a large induced load, such as earthquakes and other disasters. Thus, researchers aim to determine the behavior of precast concrete structure with a specific type of connection. To clarify this problem, this study investigates the capacity behavior of precast concrete panel connections for industrial buildings with a new type of precast wall-to-wall connection (i.e., U-shaped steel channel connection). This capacity behavior is compared with the capacity behavior of precast concrete panel connections for industrial buildings that used a common approach (i.e., loop connection), which is subjected to monotonic loading as in-plane and out-of-plane loading by developing a finite element model. The principal stress distribution, deformation of concrete panels and welded wire mesh (BRC) reinforcements, plastic strain trend in the concrete panels and connections, and crack propagations are investigated for the aforementioned connection. Pushover analysis revealed that loop connections have significant defects in terms of strength for in-plane and out-of-plane loads at three translational degrees of freedom compared with the U-shaped steel channel connection.