• 제목/요약/키워드: Plasma thermal spray

검색결과 132건 처리시간 0.027초

액체로켓엔진 연소기에 적용된 니켈-크롬 코팅의 열차폐 효율과 내구성 (Thermal Barrier Efficiency and Endurance of Ni-Cr Coating in Liquid Rocket Engine Combustor)

  • 이광진;임병직;김종규;한영민;최환석
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.138-143
    • /
    • 2009
  • 액체로켓엔진 연소기에 적용된 대기 플라즈마 코팅 및 전해/무전해 도금 코팅의 열차폐 효율과 내구성 평가를 수행하였다. 연소시험 결과 대기 플라즈마 방식의 $ZrO_2$, NiCrAlY 코팅은 로켓엔진 연소기의 초음속 유동영역에서 코팅이 표면에서 박리되는 현상이 간헐적으로 발생하였으며 따라서 이러한 문제를 극복할 수 있는 대체 코팅 방식이 요구되었다. 시험 결과 열차폐 효율 및 내구성 관점에서 대기 플라즈마 방식의 $ZrO_2$, NiCrAlY 코팅의 대안으로 무전해/전해 방식을 사용한 니켈-크롬 코팅을 사용할 수 있음을 알 수 있었다.

  • PDF

인공해양환경에서 플라즈마 아크 용사 공법이 적용된 Al 및 Zn 코팅의 부식 방지 성능 평가 (Anti Corrosive Performance of Al and Zn Coatings Deposited by Plasma Arc Thermal Spray Process in Artificial Ocean Water)

  • 잔낫;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.52-53
    • /
    • 2020
  • The thermal spray coating process is being used to protect the metals and alloys from wear, abrasion, fatigue, tribology, and corrosion failure. Therefore, in the present study, Al and Zn was deposited by plasma arc thermal spray process onto the steel substrate and their performance was assessed. The bond adhesion result shows that Al coating has higher value attributed to compact, dense, and less porous compared to Zn coating which contain defects/pores and uneven morphology assessed by scanning electron microscopy (SEM). Electrochemical results show that the Al coating exhibited higher impedance value compared to Zn in artificial ocean water solution at prolonged exposure periods. However, both coatings show the increment in polarization resistance with exposure periods which reveal that porosity of coatings is filled by the corrosion products.

  • PDF

열 플라스마 용사법에 의해 코팅된 SOFC 용 세라믹 연결재인 $La_{0.8}Ca_{0.2}CrO_3$ 특성 연구 (Characterization and Preparation of $La_{0.8}Ca_{0.2}CrO_3$ Ceramic Interconnect Prepared by Thermal Plasma Spray Coating Process for SOFC)

  • 박광연;임탁형;이승복;박석주;송락현;신동렬
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.201-206
    • /
    • 2010
  • In present work, $La_{0.8}Ca_{0.2}CrO_3$ (LCC) ceramic interconnect layer for SOFC was prepared by using thermal plasma spray coating process. The LCC powders were synthesized by Pechini method and calcined at the temperature of $1000^{\circ}C$. The prepared LCC powder was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), particle counter, BET analysis, respectively. In addition, basic and essential properties of LCC layer coated by thermal plasma spray coating process such as the morphology of surface and cross section for coated layer, gas leak rate, and electrical conductivity were analyzed and discussed. Based on these experimental results, it can be concluded that the LCC layer coated by thermal plasma spray coating process can be suitable as a ceramic interconnect of SOFC operated at $800^{\circ}C$.

대기플라즈마 용사법으로 제조된 열차폐코팅의 열피로특성 평가 (Thermal Fatigue Behavior of Thermal Barrier Coatings by Air Plasma Spray)

  • 이한상;김의현;이정혁
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.363-369
    • /
    • 2008
  • Effects of top coat morphology and thickness on thermal fatigue behavior of thermal barrier coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and $300{\mu}m$ respectively. The thickness of top coat was about $700{\mu}m$ in the perpendicular cracked specimen (PCS). Under thermal fatigue condition at $1,100^{\circ}C$, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and thermally grown oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

플라즈마 용사에 의한 Al-SiCp 복합재료 코팅층의 제조 (Preparation of Al-SiCp Composite Coating by Plasma Thermal Spray)

  • 민준원;유승을;김영정;김정석;서동수
    • 한국세라믹학회지
    • /
    • 제40권5호
    • /
    • pp.460-467
    • /
    • 2003
  • 기계적 합금화법에 의해 준비된 복합분말을 이용하여 용사공정에 의해 알루미늄 모재에 Al-SiC$_{p}$ 복합재료 코팅층을 형성하였다. 24h milling 후 복합화된 분말을 제조할 수 있었으며, 이 분말을 용사하여 복합재료 코팅층을 형성할 수 있었다. 코팅층의 두께 및 기공율과 공정변수와 관계를 분석하였으며, 경도의 증가를 확인하였다. 또한 TEM분석에 의해 Al-Si-C-O 화합물의 존재를 확인하였다.

플라즈마 용사에 의해 제조한 $Al-SiC_{p}$ 복합재료 코팅층의 고온마찰특성 (High Temperature Friction Characteristic of $Al-SiC_{p}$ Composite Coating Prepared by Plasma Thermal Spray)

  • 민준원;유승을;서동수
    • Tribology and Lubricants
    • /
    • 제19권5호
    • /
    • pp.274-279
    • /
    • 2003
  • $Al-SiC_{p}$ composite layer was prepared by plasma thermal spray on aluminum substrate. The homogeneously dispersed composite powder for thermal spray was fabricated by mechanical alloying with ball mill. The friction tests of the composite layers and commercial aluminum alloys for comparison were performed in the temperature range of 20∼$260^{\circ}C$ with the interval of $40^{\circ}C$ with steel counter-face. Friction coefficient was recorded during test sequence, and the microstructure of surface and debris was investigated by optical and scanning electron microscope. Friction coefficients of composite and aluminum alloys at room temperature were similar except pure aluminum. As the temperature increase, friction coefficient was increased rapidly in AC4C, AC2A. But friction coefficient of $Al-SiC_{p}$ composite was not increased so much up to $220^{\circ}C$. Consequently, the reinforcement of $SiC_{p}$ into aluminum matrix increased the stability of friction coefficient as well as wear resistance.

서스펜션 플라즈마 용사로 제조된 란타눔/가돌리늄 지르코네이트 열차폐코팅의 구조와 열전도도 특성 (Structure and Thermal Conductivity of Thermal Barrier Coatings in Lanthanum/Gadolinium Zirconate System Fabricated via Suspension Plasma Spray)

  • 권창섭;이성민;오윤석;김형태;장병국;김성원
    • 한국표면공학회지
    • /
    • 제47권6호
    • /
    • pp.316-322
    • /
    • 2014
  • With increase in demand for higher operating temperatures of gas turbines, extensive research efforts have been carried out to enhance the performance of thermal barrier coatings (TBCs) in the field of coating processing as well as materials. In this study, thermal barrier coatings in lanthanum/gadolinium zirconate system, which is one of the most promising candidates for replacing yttira-stabilized zirconia (YSZ) in thermal barrier coating applications, are fabricated via suspension plasma spray. Dense, $300{\sim}400{\mu}m$ thick coatings of fluoritephase zirconate with modest amount of segmented microstructures are obtained by using suspension plasma spray with suspensions of planetary-milled mixture between lanthanum and/or gadolinium oxide and nano zirconia. These coatings exhibit thermal conductivities of 1.6 ~ 1.7 W/mK at $1000^{\circ}C$, which is relatively lower than that of YSZ.

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.

서스펜션 플라즈마 용사법으로 제조한 La2Zr2O7, (La0.5Gd0.5)2Zr2O7, Gd2Zr2O7 열차폐코팅의 상형성과 열전도 특성 (Phase Formation and Thermal Diffusivity of Thermal Barrier Coatings of La2Zr2O7, (La0.5Gd0.5)2Zr2O7, Gd2Zr2O7 Fabricated by Suspension Plasma Spray)

  • 김선주;이성민;오윤석;김형태;장병국;김성원
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.604-611
    • /
    • 2016
  • In order to comply with demand for high efficient gas turbines operating at higher temperatures, considerable amounts of research efforts have been performed with searching for the next-generation thermal barrier coatings (TBCs) with respect to coating materials as well as processing methods. In this study, thermal barrier coatings in the $(La_{1-x}Gd_x)_2Zr_2O_7$ system, which is one of the most versatile materials replacing yttria-stabilized zirconia (YSZ), are fabricated by suspension plasma spray with suspension made of synthesized powders via solidstate reaction. Dense, $100{\sim}400{\mu}m$ thick coatings of fluorite-phase zirconate with moderate amount of segmented microstructures are obtained by using suspension plasma spray. Phase formation and thermal diffusivity are characterized with coating compositions. The feasibility of $(La_{1-x}Gd_x)_2Zr_2O_7$ coatings for TBC applications is also discussed.