• Title/Summary/Keyword: Plasma polymer

Search Result 424, Processing Time 0.026 seconds

Formation of hydrophilic polymer films by DC-plasma of monomer and reactive gases

  • Kim, Ki-Hwan;Park, Sung-Chang;doo-Jin choi;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.161-161
    • /
    • 1999
  • In the field of material science, the interests and efforts to modify the surface of materials in agreement with the need of usage have been extensively increasing. he modification to improve the wettability of surface is very important is terms of adhesion, printing, etc. It is very difficult to modify metal surface into hydrophilic one. therefore, surfactant coating has been generally used in many cases. However, surfactant has disadvantages such as environmental problem, soluble in water. in this study, hydrophilic polymer films as alternative of surfactant were deposited on metal substrate by DC plasma polymerization. Hydrophilic polymer films deposited by DC plasma show many merits such as good wettability, stone adhesion to substrate, high resistance to most chemicals. Monomer gas and reactive gas were used as source plasma polymerization. Plasma polymerized films were fabricated with process parameters of deposition time, ratio of gas mixture, current, pressure, etc. Effects of these variables on wettability of plasma polymer films will be discussed. With XPS and FT-IR analyses of plasma polymeric films, the relation between wettability and chemical state of polymer films by DC plasma was investigated.

  • PDF

He-Polymer Microchip Plasma (PMP) System Incorporating a Gas Liquid Separator for the Determination of Chlorine Levels in a Sanitizer Liquid

  • Oh, Joo-Suck;Kim, Y.H.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.595-598
    • /
    • 2009
  • The authors describe an analytical method to determine total chlorine in a sanitizer liquid, incorporating a lab-made He-rf-plasma within a PDMS polymer microchip. Helium was used instead of Ar to produce a plasma to achieve efficient Cl excitation. A quartz tube 1 mm i.d. was embedded in the central channel of the polymer microchip to protect it from damage. Rotational temperature of the He-microchip plasma was in the range 1350-3600 K, as estimated from the spectrum of the OH radical. Chlorine was generated in a volatilization reaction vessel containing potassium permanganate in combination of sulfuric acid and then introduced into the polymer microchip plasma (PMP). Atomic emission lines of Cl at 438.2 nm and 837.7 nm were used for analysis; no emission was observed for Ar plasma. The achieved limit of detection was 0.81 ${\mu}g\;mL^{-1}$ (rf powers of 30-70 W), which was sensitive enough to analyze sanitizers that typically contained 100-200 ${\mu}g\;mL^{-1}$ of free chlorine in chlorinated water. This study demonstrates the usefulness of the devised PMP system in the food sciences and related industries.

The Characteristics of GZOB Thin Film on O2 Plasma Treated Polymer Substrate (O2 플라즈마로 처리한 폴리머 기판 위에 성장된 GZOB 박막의 특성)

  • Yu, Hyun-Kyu;Lee, Jong-Hwan;Lee, Tae-Yong;Hur, Won-Young;Lee, Kyung-Chun;Shin, Hyun-Chang;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.645-649
    • /
    • 2009
  • We investigated the effects of a high density $O_2$ plasma treatment on the structural and electrical properties of Ga-, B- codoped ZnO (GZOB) films. The GZOB films were deposited on polymer substrate without substrate heating by DC magnetron sputtering. Prior to the GZOB film growth, we treated a polymer substrate with highly dense inductively coupled oxygen plasma. The optical transmittance of the GZOB film, about 80 %, was maintained regardless of the plasma pre-treatment. The resistivity of the GZOB film on PC substrate decreased from 9.08 ${\times}$ $10^{-3}$ ${\Omega}-cm$ without an $O_2$ plasma pre-treatment to 2.12 ${\times}$ $10^{-3}$ ${\Omega}-cm$ with an $O_2$ plasma pre-treatment. And PES substrate decreased from 1.14 ${\times}$ $10^{-2}$ ${\Omega}-cm$ without an $O_2$ plasma pre-treatment to 6.13 ${\times}$ $10^{-3}$ ${\Omega}-cm$ with an $O_2$ plasma pre-treatment.

Improvement of the mechanical performance and dyeing ability of bamboo fiber by atmospheric pressure air plasma treatment

  • Hoa, Ta Phuong;Chuong, Bui;Hung, Dang Viet;Tien, Nguyen Dung;Khanh, Vu Thi Homg
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.03a
    • /
    • pp.14-20
    • /
    • 2009
  • Atmospheric pressure air plasma was applied for treatment of different kinds of natural bamboo fiber to improve their mechanical properties and surface characteristics, which are suitable for adhesion and dyeing. The tensile strength and Young modulus of bamboo fiber were significantly improved; SEM and AFM study show that the surface of fiber became cleaner and rougher after plasma treatment. Plasma treatment caused the cracking, removing of the protective skin of alkali-untreated fiber and etching to form a cleaner and rougher surface. The dyeability of both groups of bamboo fiber which are used for composite and textile purposes is significantly enhanced after treatment.

  • PDF

Plasma treatment on PMMA, PET & ABS for Superhydrophobicity (플라즈마 처리에 의한 PMMA, PET, ABS의 초발수 효과)

  • Choi, Gyoung-Rin;Noh, Jung-Hyun;Lee, Jun-Hee;Kim, Wan-Doo;Lim, Hyun-Eui
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1582-1584
    • /
    • 2008
  • This paper reports a simple fabrication method for creating the superhydrophobic polymer surface using a plasma etching. Generally, it is necessary for the superhydrophobic surfaces to have a rough structure on surface with the composition of the low surface energy. In this study, Poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate) (PET), acrylonitrile butadiene styrene (ABS) with superhydrophobic surface were fabricated using $O_2$ plasma etching and vapor deposition with the fluoroalkylsilane self-assembled monolayers. The plasma treated polymer surfaces are covered with the nano-pillar shaped structures after treatment for $1{\sim}2min$. And these samples with FOTS SAMs coating are showed the superhydrophobicity having the water contact angle of around $150^{\circ}$ and sometimes around $180^{\circ}$ depending on the treatment time. Furthermore the nanostructured polymer is transparent for the visible light.

  • PDF

Surface Modification of Polypropylene by Low Temperature Plasma Polymerization( I ) ―hydrophilicity― (저온 Plasma 중합에 의한 Polypropylene의 표면 개질 (I) -친수성-)

  • Chang, Du Sang;Cho, In Sul
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.8-15
    • /
    • 1996
  • This research was attempted to improve the hydrophilicity of polypropylene(PP) by using low temperature plasma polymerization of acrylic acid(AA) as a starting material. The results of the present study were as follows: The PP films deposited with AA plasma polymer showed excellent hydrophilicity, that the polar parts were about 20 dyn/cm, and also that the surface tensions were about 55 dyn/cm, whereas the disperse parts were not changed. Work of adhesions of the PP films deposited with AA plasma polymer were above 100 erg/ $cm^{2}$. AA plasma polymer formed by low temperature plasma polymerization of acrylic acid(AA) was even thin layer which contained many -OH groups.

  • PDF

Preparation of Polymer Thin Films of Pentafluorostyrene via Plasma Polymerization

  • Ahn, C.J.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Polymer thin films of pentafluorostyrene (PFS) were prepared by RF plasma (13.56 MHz) polymerization in continuous wave (CW) mode, as a function of plasma power and monomer pressure. Conditions for film preparation were optimized by measuring the solvent resistance of plasma polymer thin films in DMAc, NMP, THF, acetone and chloroform, as well as by evaluating the optical clarity via UV-VIS measurements. Pulsed mode plasma polymerization was also utilized to enhance the optical properties of the films by varying the period of on-time and duty cycle. Finally, the films were subjected to refractive index measurements and analyzed by ${\alpha}$-step, TGA and FT-IR.

  • PDF

Dimensional Properties of Low Temperature Plasms and Silicone Treated Wool Fabric

  • Kim, Min-Sun;Kang, Tae-Jin
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.152-156
    • /
    • 2001
  • Three different silicone polymer systems, such as aminofunctional, epoxyfunctional, and hydrophilic epoxyfunctional silicone polymers, were applied onto plasma pretreated wool fabric to improve the dimensional properties. The results showed that the plasma pretreatment modified the cuticle surface of the wool fiber and increased the reactivity of wool fabric toward silicone polymers. Felting shrinkage of plasma and silicone treated wool fabric was decreased with different level depending on the applied polymer system. Fabric tear strength and hand were adversely affected by plasma treatment, but these properties were favorably restored on polymer application. Therefore, it has been concluded that the combination of plasma and silicone treatments can achieve the improved dimensional stability, and better performance properties of wool fabric. The surface smoothness appearances of treated fabrics were measured using a new evaluation system, which showed good correspondence with the results of KES-FB4 surface tester.

  • PDF

Investigate Electronic Property of N-doped Plasma-Polymer Thin Films for Applied Biosensors

  • Seo, Hyeon-Jin;Hwang, Gi-Hwan;Nam, Sang-Hun;Ju, Dong-U;Lee, Jin-Su;Yu, Jeong-Hun;Bu, Jin-Hyo;Yun, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.159-159
    • /
    • 2013
  • In this studying, we investigated the basic properties of N-doped plasma polymer. The N-doped plasma polymer thin films were deposited by radio frequency (13.56 MHz) plasma-enhanced chemical vapor deposition method. Various carbon-source were used as organic precursor with hydrogen gas as the precursor bubbler gas. Additionally, ammonia gas [NH3] was used as nitrogen dopant. The as-grown polymerized thin films were analyzed using cyclic voltammetry, ellipsometry, Fourier-transform infrared [FT-IR] spectroscopy, Raman spectroscopy, FE-SEM, and water contact angle measurement. Electronic property of N-doped plasma thin film is changed as flow rate of the NH3 gas.

  • PDF

Plasma and VUV Pretreatments of Polymer Surfaces for Adhesion Promotion of Electroless Ni or Cu Films

  • Romand, M.;Charbonnier, M.;Goepfert, Y.
    • Journal of Adhesion and Interface
    • /
    • v.4 no.2
    • /
    • pp.10-20
    • /
    • 2003
  • This paper is relative to the electroless deposition of nickel or copper films on polyimide and polytetrafluoroethylene substrates. First, it is presented an original approach of the electroless process which consists in grafting nitrogenated functionalities on the polymer surfaces via plasma or VUV-assisted treatments operating in a nitrogen-based atmosphere ($NH_3$, $N_2$), and then in catalysing the grafted surfaces in an aqueous tin-free, Pd(+2)-based solution. Adhesion of the Pd(+2) catalytic species on polymer surfaces is explained by the formation of strong covalent bonds between these species and the grafted nitrogenated groups. Second, it is show how a fragmentation test performed in conjunction with electrical measurements can be used to characterize the practical adhesion of the electroless coatings deposited on flexible polymer substrates, and to evidence the influence of some experimental parameters (plasma treatment time and nature of the gas phase).

  • PDF