• Title/Summary/Keyword: Plasma distribution

Search Result 774, Processing Time 0.031 seconds

Electric field distribution and discharge characteristics in accordance with various ITO electrode structures in AC-PDP

  • Cho, Seok-H.;Oh, P.Y.;Kim, J.H.;Hong, Y.J.;Kwon, G.C.;Cho, G.S.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.396-399
    • /
    • 2008
  • In this study, the electric field distributions have been investigated by simulation in accordance with the various shapes of ITO-electrodes. Also we have measured the density of excited Xe atoms in the 1s5 state in discharge cell, where the gap distance of 60 um, gas pressure of 400 Torr, Xe contents of 7%, and sustaining voltage of 200 V are kept in this experiment. The maximum density of excited Xe atoms in the 1s5 state in a discharge cell for the fish-boned, T shaped and squared ITO electrodes have been measured to be $3.01\;{\times}\;10^{13}\;cm^{-3}$, $2.66\;{\times}\;10^{13}\;cm^{-3}$ and $2.06\;{\times}\;10^{13}\;cm^{-3}$, respectively. It is shown that the electric field distribution with different ITO Electrodes is essential factor for these maximum density of excited Xe atoms in discharge cell.

  • PDF

Folate Status and Plasma Homocysteine Concentration of Korean Adults (한국 성인 남녀의 엽산 영양상태와 혈장 호모시스테인 농도)

  • 민혜선
    • Journal of Nutrition and Health
    • /
    • v.34 no.4
    • /
    • pp.393-400
    • /
    • 2001
  • We examined the relationship between plasma folate and total homocysteine(Hcy) levels and the distribution of plasma folate and Hcy levels from 204 Korean adults(113 men and 91 women aged between 20yr and 69yr). Plasma folate levels were significantly lower in men(12.2nmol/L) than in women(14.6nmol/L) after controlling for smoking and drinking(p<0.05). Plasma Hcy levels were significantly higher in men(13.9$\mu$mol/L) than in women(11.8$\mu$mol/L) after controlling and drinking. Plasma Hcy levels were more more strongly correlated with plasma folate in women(${\gamma}$=-0.321, p<0.05) than in men(${\gamma}$=-0.202, p<0.05), but the difference between men and women was no longer statistically significant controlling for plasma folate concentration. Prevalence of mild homocysteinemia(plama Hcy>15$\mu$mol/L) was greatest among subjects with lowest folate status. These results indicate a strong association between plasma Hcy concentration and folate status and the poor folate status is the strong causative factor of mild homocysteinemia. (Korean J Nutrition 34(4) : 393~400, 2001)

  • PDF

Measurements of Plasma Flows in Micro-Tube/Channel Using Micro-PIV (Micro-PIV를 이용한 마이크로 튜브/채널 내에서의 혈장유동측정)

  • Ko, Choon-Sik;Yoon, Sang-Youl;Ki, Ho-Seong;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.587-593
    • /
    • 2004
  • In this paper, flow characteristics of plasma flow in a micro-tube were investigated experimentally using micro particle image velocimetry(micro-PIV). For comparison, the experiments were repeated for deionized(DI) wale. instead of plasma. Both velocity profiles of plasma and do-ionized water are well agreed with the theoretical velocity distribution of newtonian fluid. We also carried out generating plasma-in-oil droplet formation at a Y-junction microchannel. In order to clarify the hydrodynamic aspects involved in plasma droplet formation, Rhodamine-B were mixed with plasma only for visualization of plasma droplet. With oil as the continuous phase and plasma as the dispersed phase, plasma droplet can be generated in a continuous phase flow at a Y-junction. For given experimental parameters, regular-sized droplets are reproducibly formed at a uniform flow conditions.

Monitoring Ion Energy Distribution in Capacitively Coupled Plasmas Using Non-invasive Radio-Frequency Voltage Measurements

  • Choi, Myung-Sun;Lee, Seok-Hwan;Jang, Yunchang;Ryu, Sangwon;Kim, Gon-Ho
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.357-365
    • /
    • 2014
  • A non-invasive method for ion energy distribution measurement at a RF biased surface is proposed for monitoring the property of ion bombardments in capacitively coupled plasma sources. To obtain the ion energy distribution, the measured electrode voltage is analyzed based on the circuit model which is developed with the linearized sheath capacitance on the assumption that the RF driven sheath behaves like a simple diode for a bias power whose frequency is much lower than the ion plasma frequency. The method is verified by comparing the ion energy distribution function obtained from the proposed model with the experimental result taken from the ion energy analyzer in a dual cathode capacitively coupled plasma source driven by a 100 MHz source power and a 400 kHz bias power.

Effect of RF Bias on Electron Energy Distributions and Plasma Parameters in Inductively Coupled Plasma (유도 결합 플라즈마에서 플라즈마 변수와 전자 에너지 분포에 대한 극판 전력 인가의 영향)

  • Lee, Hyo-Chang;Chung, Chin-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2012
  • RF biased inductively coupled plasma (ICP) is widely used in semiconductor and display etch processes which are based on vacuum science. Up to now, researches on how rf-bias power affects have been focused on the controls of dc self-bias voltages. But, effect of RF bias on plasma parameters which give a crucial role in the processing result and device performance has been little studied. In this work, we studied the correlation between the RF bias and plasma parameters and the recent published results were included in this paper. Plasma density was changed with the RF bias power and this variation can be explained by simple global model. As the RF bias was applied to the ICP, increase in the electron temperature from the electron energy distribution was measured indicating electron heating. Plasma density uniformity was enhanced with the RF bias power. This study can be helpful for the control of the optimum discharge condition, as well as the basic understanding for correlation between the RF bias and plasma parameters.

Characterization of Gas Distribution Effect in Inductively Coupled Plasma System (유도결합 플라즈마 시스템의 수치 모델링에서 가스 분배 특성 해석)

  • Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.133-138
    • /
    • 2013
  • We have developed a 2D axi-symmetric numerical model for an inductively coupled plasma system in order to analyze gas mixing effect through a narrow gap shower head. For frictional flow, holes of 0.5 mm diameter and 2 mm length are approximately modeled in 2D. Gas velocity distribution 10 mm below the shower head showed 2 times difference between the center and the edge at 10 mTorr. At 10 mm above the wafer, it was increased to 6 times difference due to the pumping duct effect. The model with a 5 mm height buffer region of a shower head showed reasonable behavior of Ar discharge. The density of Ar metastable showed additional peak inside the buffer region around the edge holes.

A Physiologically Based Pharmacokinetic Model for Absorption and Distribution of Imatinib in Human Body

  • Chowdhury, Mohammad Mahfuz;Kim, Do-Hyun;Ahn, Jeong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3967-3972
    • /
    • 2011
  • A whole body physiologically based pharmacokinetic (PBPK) model was applied to investigate absorption, distribution, and physiologic variations on pharmacokinetics of imatinib in human body. Previously published pharmacokinetic data of the drug after intravenous (i.v.) infusion and oral administration were simulated by the PBPK model. Oral dose absorption kinetics were analyzed by adopting a compartmental absorption and transit model in gut section. Tissue/plasma partition coefficients of drug after i.v. infusion were also used for oral administration. Sensitivity analysis of the PBPK model was carried out by taking parameters that were commonly subject to variation in human. Drug concentration in adipose tissue was found to be higher than those in other tissues, suggesting that adipose tissue plays a role as a storage tissue for the drug. Variations of metabolism in liver, body weight, and blood/plasma partition coefficient were found to be important factors affecting the plasma concentration profile of drug in human body.

A Study on the Comparision of Electron Energy Distribution Function measured by sawtooth and triangle waveform probe bias voltages (톱니파 및 삼각파 프로브 bias 전압에 의해 측정된 전자에너지 분포함수의 비교에 관한 연구)

  • Kim, D.H.;Shin, J.H.;Kim, G.S.;Park, Y.C.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1844-1847
    • /
    • 1996
  • In the paper, we have obtained electron energy distribution function (EEDF) in plasma by using two differentiators. In addition, we have investigated the comparision of the EEDFs by sawtooth and triangle waveform voltages. It is found that as pressure is decreased, electron density is decreased, and plasma potential is increased. And as the position of probe moves the outer of plasma, plasma potential is decreased, and electron temperature is decreased.

  • PDF

Influence of the Density Gradient on the Current of the Electrode Immersed in the Non-uniform Plasma (플라즈마 삽입전극의 전류에 미치는 밀도 구배의 영향)

  • Hwang, Hui-Dong;Gu, Chi-Wuk;Chung, Kyung-Jae;Choe, Jae-Myung;Kim, Gon-Ho;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.504-509
    • /
    • 2011
  • The conducting current of non-uniform plasma immersed electrode consists of ion current and secondary electron emission current caused by the impinging ion current. The ion current is determined by the ion dose passing through the sheath in front of electrode and the ion distribution in front of the electrode plays an important role in the secondary electron emission. The investigation of the distributed plasma and secondary electron effect on electrode ion current was carried out as the stainless steel electrode plugged with quartz tube was immersed in the inductively coupled Ar plasma using the antenna powered by 1 kw and the density profile was measured. After that, the negative voltage was applied by 1 kV~6 kV to measure the conduction current for the analysis of ion current.

Effects of axial external magnetic fields on plasma density on substrate in helical resonator plasma source (헬리칼 공명 플라즈마에서 축 방향의 외부 자장이 기판상의 플라즈마 밀도에 미치는 영향)

  • 김태현;태흥식;이용현;이호준;이정해;최경철
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.172-179
    • /
    • 1999
  • The axial distributions of plasma density in a helical resonator plasma with the external magnetic field have been measured using Langmuir probes. Net RF power is set to 200W and chamber pressure is varied from 0.4 mTorr to 100mTorr there are three kinds of eternal magnetic field structure applied on the helical resonator plasma. One is a uniform magnetic field, the second is a positive gradient magnetic field and the third is a negative gradient magnetic field. In the three magnetic field structures, the negative gradient magnetic field is found to show the highest increase in plasma density on the substrate compared with other magnetic structures. Plasma density profile in helical resonator is well consistent with electromagnetic field pattern obtained by computer simulation. It is also found that axial magnetic fields do not affect plasma density distribution in the plasma reactor region, but induce the increase of plasma density in the process chamber region. In order to avoid the nonuniformity of radial density profile, weak magnetic fields under 100G are applied.

  • PDF