DOI QR코드

DOI QR Code

Influence of the Density Gradient on the Current of the Electrode Immersed in the Non-uniform Plasma

플라즈마 삽입전극의 전류에 미치는 밀도 구배의 영향

  • Hwang, Hui-Dong (Hyosung Corporation, Power & Industrial Systems R&D Center) ;
  • Gu, Chi-Wuk (Department of Electrical Engineering, Hanyang University) ;
  • Chung, Kyung-Jae (Department of Nuclear Engineering, Seoul National University) ;
  • Choe, Jae-Myung (Department of Nuclear Engineering, Seoul National University) ;
  • Kim, Gon-Ho (Department of Nuclear Engineering, Seoul National University) ;
  • Ko, Kwang-Cheol (Department of Electrical Engineering, Hanyang University)
  • 황휘동 ((주)효성중공업 중공업연구소) ;
  • 구치욱 (한양대학교 전기공학과) ;
  • 정경재 (서울대학교 원자핵공학과) ;
  • 최재명 (서울대학교 원자핵공학과) ;
  • 김곤호 (서울대학교 원자핵공학과) ;
  • 고광철 (한양대학교 전기공학과)
  • Received : 2011.01.03
  • Accepted : 2011.05.05
  • Published : 2011.06.01

Abstract

The conducting current of non-uniform plasma immersed electrode consists of ion current and secondary electron emission current caused by the impinging ion current. The ion current is determined by the ion dose passing through the sheath in front of electrode and the ion distribution in front of the electrode plays an important role in the secondary electron emission. The investigation of the distributed plasma and secondary electron effect on electrode ion current was carried out as the stainless steel electrode plugged with quartz tube was immersed in the inductively coupled Ar plasma using the antenna powered by 1 kw and the density profile was measured. After that, the negative voltage was applied by 1 kV~6 kV to measure the conduction current for the analysis of ion current.

Keywords

References

  1. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, Inc., 2005) 526
  2. E. Stamate, N. Holtzer, and H. Sugai, Appl. Phys. Lett., 86, 261501 (2005). https://doi.org/10.1063/1.1951045
  3. R. A. Stewart and M. A. Lieberman, J. Appl. Phys., 70, 3481 (1991). https://doi.org/10.1063/1.349240
  4. J. M. Choe, K. J. Chung, H. D. Hwang, Y. S. Hwang, K. C. Ko, and G. H. Kim, Jpn. J. Appl. Phys., 45, L686 (2006). https://doi.org/10.1143/JJAP.45.L686
  5. Y. W. Kim, G. H. Kim, S. H. Han, Y. Lee, J. Cho, and S. Y. Rhee, Surf. Coat. Technol., 136, 97 (2001). https://doi.org/10.1016/S0257-8972(00)01035-5
  6. C. D. Child, Phy. Rev., 22, 492 (1911).
  7. B. Szapiro and J. J. Rocca, J. Appl. Phys., 65, 3713 (1989). https://doi.org/10.1063/1.342600
  8. M. Shamim, J. T. Scheuer, and J. R. Conrad, J. Appl. Phys., 70, 4756 (1991). https://doi.org/10.1063/1.349067
  9. G. H. Kim, Y. W. Kim, S. Han, H. S. Uhm, J. Cho, M. J. Jung and M. Hong, J. Appl. Phy., 93 1384 (2003). https://doi.org/10.1063/1.1536721