• 제목/요약/키워드: Plant growth promoter

검색결과 87건 처리시간 0.032초

Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco

  • Hasthanasombut, Supaporn;Ntui, Valentine;Supaibulwatana, Kanyaratt;Mii, Masahiro;Nakamura, Ikuo
    • Plant Biotechnology Reports
    • /
    • 제4권1호
    • /
    • pp.75-83
    • /
    • 2010
  • Glycine betaine has been reported as an osmoprotectant compound conferring tolerance to salinity and osmotic stresses in plants. We previously found that the expression of betaine aldehyde dehydrogenase 1 gene (OsBADH1), encoding a key enzyme for glycine betaine biosynthesis pathway, showed close correlation with salt tolerance of rice. In this study, the expression of the OsBADH1 gene in transgenic tobacco was investigated in response to salt stress using a transgenic approach. Transgenic tobacco plants expressing the OsBADH1 gene were generated under the control of a promoter from the maize ubiquitin gene. Three homozygous lines of $T_2$ progenies with single transgene insert were chosen for gene expression analysis. RT-PCR and western blot analysis results indicated that the OsBADH1 gene was effectively expressed in transgenic tobacco leading to the accumulation of glycine betaine. Transgenic lines demonstrated normal seed germination and morphology, and normal growth rates of seedlings under salt stress conditions. These results suggest that the OsBADH1 gene could be an excellent candidate for producing plants with osmotic stress tolerance.

Molecular Analysis of Salmonella Enterotoxin Gene Expression

  • Lim, Sang-Yong;Seo, Ho-Seong;Yoon, Hyun-Jin;Choi, Sang-Ho;Heu, Sung-Gi;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.598-606
    • /
    • 2003
  • Salmonella encodes an enterotoxin (Stn) which possesses biological activity similar to the cholera toxin. Stn contributes significantly to the overall virulence of S. typhimurium in a murine model. The production of Stn is enhanced in a high-osmolarity medium and by contact with epithelial cells. In the present study, the in vitro and in vivo transcriptional regulations of the sin promoter revealed two promoters, P1 and P2. The P1 promoter identified by a primer extension analysis of stn mRNA exhibited a switching mechanism in vivo. Depending on the growth stage, transcription was initiated from different start sites termed $P1_S\;and\;P1_E$. $P1_S$, recognized by RNA polymerase containing ${\sigma}^S(E{\sigma}^S),\;and\;P1_E$, recognized by $E{\sigma}^70$, were activated during the stationary and exponential phases, respectively, while $P1_S\;and\;P1_E$ were both negatively regulated by CRPㆍcAMP and H-NS. Results revealed that $P1_S$ was the responsible promoter activated under a high osmolarity and low pH. The P2 promoter was identified 45 nucleotides downstream from $P1_E$ and negatively controlled by CRPㆍcAMP in vitro. No P2 activity was detected in vivo. The regulation of stn expression monitored using a Pstn::egfp fusion indicated that $E{\sigma}^S$ was required for the induction of stn and various factors were involved in stn regulation inside animal cells.

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing

  • Ko, Jae-Heung;Kim, Hyun-Tae;Han, Kyung-Hwan
    • Plant Biotechnology Reports
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose and lignin surrounds the cellulose component of the plant's cell wall in order to protect the cell from enzymatic attacks. Such resistance, along with the variability seen in the proportions of the major components of the mixture, presents process design and operating challenges to the bioconversion of lignocellulosic biomass to fuel. Expanding bioenergy production to the commercial scale will require a significant improvement in the growth of feedstock as well as in its quality. Plant biotechnology offers an efficient means to create "targeted" changes in the chemical and physical properties of the resulting biomass through pathway-specific manipulation of metabolisms. The successful use of the genetic engineering approach largely depends on the development of two enabling tools: (1) the discovery of regulatory genes involved in key pathways that determine the quantity and quality of the biomass, and (2) utility promoters that can drive the expression of the introduced genes in a highly controlled manner spatially and/or temporally. In this review, we summarize the current understanding of the transcriptional regulatory network that controls secondary wall biosynthesis and discuss experimental approaches to developing-xylem-specific utility promoters.

A comparison of individual and combined $_L$-phenylalanine ammonia lyase and cationic peroxidase transgenes for engineering resistance in tobacco to necrotrophic pathogens

  • Way, Heather M.;Birch, Robert G.;Manners, John M.
    • Plant Biotechnology Reports
    • /
    • 제5권4호
    • /
    • pp.301-308
    • /
    • 2011
  • This study tested the relative and combined efficacy of ShPx2 and ShPAL transgenes by comparing Nicotiana tabacum hybrids with enhanced levels of $_L$-phenylalanine ammonia lyase (PAL) activity and cationic peroxidase (Prx) activity with transgenic parental lines that overexpress either transgene. The PAL/Prx hybrids expressed both transgenes driven by the 35S CaMV promoter, and leaf PAL and Prx enzyme activities were similar to those of the relevant transgenic parent and seven- to tenfold higher than nontransgenic controls. Lignin levels in the PAL/Prx hybrids were higher than the PAL parent and nontransgenic controls, but not significantly higher than the Prx parent. All transgenic plants showed increased resistance to the necrotrophs Phytophthora parasitica pv. nicotianae and Cercospora nicotianae compared to nontransgenic controls, with a preponderance of smaller lesion categories produced in Prx-expressing lines. However, the PAL/Prx hybrids showed no significant increase in resistance to either pathogen relative to the Prx parental line. These data indicate that, in tobacco, the PAL and Prx transgenes do not act additively in disease resistance. Stacking with Prx did not prevent a visible growth inhibition from PAL overexpression. Practical use of ShPAL will likely require more sophisticated developmental control, and we conclude that ShPx2 is a preferred candidate for development as a resistance transgene.

High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun;Kwon, Suk-Yoon;Park, Doo-Sang;Yang, Kyoung-Sil;Kim, Jae-Whune;Lee, Ki-Teak;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권5호
    • /
    • pp.442-448
    • /
    • 2006
  • Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.

Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development

  • Park, Chan Ho;Roh, Jeehee;Youn, Ji-Hyun;Son, Seung-Hyun;Park, Ji Hye;Kim, Soon Young;Kim, Tae-Wuk;Kim, Seong-Ki
    • Molecules and Cells
    • /
    • 제41권10호
    • /
    • pp.923-932
    • /
    • 2018
  • Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.

The ABA Effect on the Accumulation of an Invertase Inhibitor Transcript that Is Driven by the CAMV35S Promoter in ARABIDOPSIS

  • Koh, Eun-Ji;Lee, Sung June;Hong, Suk-Whan;Lee, Hoi Seon;Lee, Hojoung
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.236-242
    • /
    • 2008
  • Invertase (${\beta}$-D-fructofuranosidase; EC 3.2.1.26) catalyzes the conversion of sucrose into glucose and fructose and is involved in an array of important processes, including phloem unloading, carbon partitioning, the response to pathogens, and the control of cell differentiation and development. Its importance may have caused the invertases to evolve into a multigene family whose members are regulated by a variety of different mechanisms, such as pH, sucrose levels, and inhibitor proteins. Although putative invertase inhibitors in the Arabidopsis genome are easy to locate, few studies have been conducted to elucidate their individual functions in vivo in plant growth and development because of their high redundancy. In this study we assessed the functional role of the putative invertase inhibitors in Arabidopsis by generating transgenic plants harboring a putative invertase inhibitor gene under the control of the CaMV35S promoter. A transgenic plant that expressed high levels of the putative invertase inhibitor transcript when grown under normal conditions was chosen for the current study. To our surprise, the stability of the invertase inhibitor transcripts was shown to be down-regulated by the phytohormone ABA (abscisic acid). It is well established that ABA enhances invertase activity in vivo but the underlying mechanisms are still poorly understood. Our results thus suggest that one way ABA regulates invertase activity is by down-regulating its inhibitor.

Regulation of methionine biosynthesis in plants; transgenic study

  • Kim, Jungsup;Thomas Leustek
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 2002년도 춘계학술발표대회:발표눈문요지록
    • /
    • pp.73-82
    • /
    • 2002
  • The committing step in Met and S-adenosyl-L-methionine (SAM) synthesis is catalyzed by cystathionine ${\gamma}$ -synthase (CGS). Transgenic Arabidopsis thaliana overexpressing CGS under control of 35S promoter show increased soluble Met and its metabolite S-methylmethionine, but only at specific stages of development. CGS-overexpressing seedlings are resistant to ethionine. Similar results were obtained with transgenic potato plants overexpressing Arabidopsis CGS. Several of the transgenic lines show silencing of CGS resulting in deformed p]ants with a reduced capacity for reproductive growth similar as transgenic plants by antisense RNA (CGS[-]). Exogenous feeding of Met to the CGS[-] and CGS[+] silenced plants partially restores their growth. Similar morphological deformities are observed in plants cosuppressed for SAM synthetase, even though such plants accumulate 250 fold more soluble Met than wild type and they overexpress CGS. The results suggest that the abnormalities associated with CGS and SAM synthetase silencing are due in part to a reduced ability to produce SAM, and that SAM may be a regulator of CGS expression.

  • PDF

오이에서 체세포배 발생을 통한 GUS유전자의 발현 및 식물체 재생 (GUS Gene expression and plant regeneration via somatic embryogenesis in cucumber (Cucumis sativus L.))

  • 김현아;이부연;전진중;최동욱;최필선;세이토우토모;이재혁;강동호;이영진
    • Journal of Plant Biotechnology
    • /
    • 제35권4호
    • /
    • pp.275-280
    • /
    • 2008
  • Agrobacterium공동배양법으로 오이의 기관발생을 통한 형질전환에서 가장 문제점 중 하나는 chimeric 형질전환체의 발생빈도이다. 이러한 문제점을 극복하기 위하여 항생제로서 paromomycin이 첨가된 선발배지에서 "은성" 품종의 배축절편으로부터 체세포배발생을 통한 형질전환시스템을 개발하였다. 배축절편을 pPPTN290발현벡터가 도입된 Agrobacterium 균주 (EHA101)에 30분간 접종한 후 2일간 공동배양 하였고, 선발배지에서 2주 간격으로 5회 계대 배양하면서 항생제 저항성 캘러스 선발, 체세포배발생 및 식물체를 유도하였다. pPPTN290발현벡터의 T-DNA는 reporter유전자로서 Ubi 프로모터에 의해 gus유전자가 발현조절 되도록 그리고 항생제로서 paromomycin에 저항성을 갖는 nptII유전자가 35S 프로모터에 의해 발현되도록 제조하였다. 안정적 형질전환과 빈도는 캘러스의 paromomycin항생제 저항성과 GUS유전자의 발현 여부에 의해 조사하였다. Agrobacterium과 공동배양한 928개의 배축절편에서 paromomycin에 저항성을 갖는 56개의 캘러스 클론을 얻었고, 이중 48개 캘러스 클론 (5.2%)에서 GUS유전자가 안정적으로 발현되고 있음을 확인하였다. 48개의 캘러스 클론중에서 오직 5개의 캘러스 클론으로부터 식물체를 얻어 낮은 빈도 (0.5%)를 나타냈다. 수확한 $T_1$종자에서 GUS양성반응은 gus유전자가 오이 게놈에 안정적으로 도입 및 발현되고 있음을 확인하였다.

형질전환 백합화분을 이용한 UreB단백질의 발현분석 (Analysis of UreB Protein Synthesis from Transgenic Lily Pollen)

  • 박희성;박인혜
    • KSBB Journal
    • /
    • 제17권6호
    • /
    • pp.577-581
    • /
    • 2002
  • 풍부한 식물의 화분을 이용하여 재조합단백질의 생산연구를 위하여 UreB 단백질 정보를 지닌 1.7 kb DNA를 Helicobacter pylori urease gene cluster를 지니는 pH808로보터 PCR을 통하여 증폭하고 이를 CaMV35S promoter에 연결하여 백합(Lilium longiflorum)화분내로 도입하고 기내배양을 실시하였다. 발아초기의 화분을 Agrobacterium과 함께 진공침윤시켜 ureB DNA를 형질전환시키고 kanamycin을 지니는 화분배지에서 16-24시간 배앵하여 완전한 화분관신장을 이루도록 하였다. 이들 형질전환화분의 유전자도입 및 발현을 분석하였으며 그 결과 기내배양하는 하분을 일회성의 단백질공장으로 이용할 수 있다는 가능성을 제시하였다.