DOI QR코드

DOI QR Code

GUS Gene expression and plant regeneration via somatic embryogenesis in cucumber (Cucumis sativus L.)

오이에서 체세포배 발생을 통한 GUS유전자의 발현 및 식물체 재생

  • Kim, Hyun-A (Department of Medicinal Plant Resources, Nambu University) ;
  • Lee, Boo-Youn (Department of Medicinal Plant Resources, Nambu University) ;
  • Jeon, Jin-Jung (Department of Medicinal Plant Resources, Nambu University) ;
  • Choi, Dong-Woog (Department of Biological Education, Jeonnam National University) ;
  • Choi, Pil-Son (Department of Medicinal Plant Resources, Nambu University) ;
  • Utomo, Setyo Dwi (Department of Crop Science, College of Agriculture, University of Lampung) ;
  • Lee, Jae-Hyoek (Department of Medicinal Plant Resources, Nambu University) ;
  • Kang, Tong-Ho (Department of Medicinal Plant Resources, Nambu University) ;
  • Lee, Young-Jin (Department of Medicinal Plant Resources, Nambu University)
  • 김현아 (남부대학교 한방제약개발학과) ;
  • 이부연 (남부대학교 한방제약개발학과) ;
  • 전진중 (남부대학교 한방제약개발학과) ;
  • 최동욱 (전남대학교 생물교육학과) ;
  • 최필선 (남부대학교 한방제약개발학과) ;
  • 세이토우토모 (람풍대학교 농과대학 작물학과) ;
  • 이재혁 (남부대학교 한방제약개발학과) ;
  • 강동호 (남부대학교 한방제약개발학과) ;
  • 이영진 (남부대학교 한방제약개발학과)
  • Published : 2008.12.31

Abstract

One of the limitation for Agrobacterium-mediated transformation via organogenesis from cotyledon explants routinely in cucumber is the production of chimeric plants. To overcome the limitation, Agrobacterium-mediated transformation system via somatic embryogenesis from hypocotyl explants of cucumber (c.v., Eunsung) on the selection medium with paromomycin as antibiotics was developed. The hypocotyl explants were inoculated with Agrobacterium tumefaciens strain EHA101 carrying binary vector pPTN290; then were subsequently cultured on the following media: co-cultivation medium for 2 days, selection medium for $5{\times}14$ days, and regeneration medium. The T-DNA of the vector (pPTN290) carried two cassettes, Ubi promoter-gus gene as reporter and 35S promoter-nptll gene conferring resistance to paromomycin as selectable agent. The confirmation of stable transformation and the efficiency of transformation was based on the resistance to paromomycin indicated by the growth of putative transgenic calli on selection medium amended with 100mg/L paromomycin, and GUS gene expression. Forty eight clones (5.2%) with GUS gene expressed of 56 callus clones with resistance to paromomycin were independently obtained from 928 explants inoculated. Of 48 clones, transgenic plants were only regenerated from 5 clones (0.5%) at low frequency. The histochemical GUS assay in the transgenic seeds ($T_1$) also revealed that the gus gene was successfully integrated and segregated into each genome of transgenic cucumber.

Agrobacterium공동배양법으로 오이의 기관발생을 통한 형질전환에서 가장 문제점 중 하나는 chimeric 형질전환체의 발생빈도이다. 이러한 문제점을 극복하기 위하여 항생제로서 paromomycin이 첨가된 선발배지에서 "은성" 품종의 배축절편으로부터 체세포배발생을 통한 형질전환시스템을 개발하였다. 배축절편을 pPPTN290발현벡터가 도입된 Agrobacterium 균주 (EHA101)에 30분간 접종한 후 2일간 공동배양 하였고, 선발배지에서 2주 간격으로 5회 계대 배양하면서 항생제 저항성 캘러스 선발, 체세포배발생 및 식물체를 유도하였다. pPPTN290발현벡터의 T-DNA는 reporter유전자로서 Ubi 프로모터에 의해 gus유전자가 발현조절 되도록 그리고 항생제로서 paromomycin에 저항성을 갖는 nptII유전자가 35S 프로모터에 의해 발현되도록 제조하였다. 안정적 형질전환과 빈도는 캘러스의 paromomycin항생제 저항성과 GUS유전자의 발현 여부에 의해 조사하였다. Agrobacterium과 공동배양한 928개의 배축절편에서 paromomycin에 저항성을 갖는 56개의 캘러스 클론을 얻었고, 이중 48개 캘러스 클론 (5.2%)에서 GUS유전자가 안정적으로 발현되고 있음을 확인하였다. 48개의 캘러스 클론중에서 오직 5개의 캘러스 클론으로부터 식물체를 얻어 낮은 빈도 (0.5%)를 나타냈다. 수확한 $T_1$종자에서 GUS양성반응은 gus유전자가 오이 게놈에 안정적으로 도입 및 발현되고 있음을 확인하였다.

Keywords

References

  1. Cardoza V, Stewart CNJr (2004) Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev-Plant 40: 542-551 https://doi.org/10.1079/IVP2004568
  2. Chee PP (1990) Transformation of Cucumis sativus tissue by Agrobacterium tumefaciens and the regeneration of transformed plants. Plant Cell Rep 9: 245-248
  3. Cho MA, Park YO, Kim JS, Park KJ, Min HK, Liu JR, Clemente T, Choi PS (2005b) Development of transgenic maize (Zea may L.) using Agrobacterium tumefaciensmediated transformation. Kor J Plant Biotechnol 32: 91-95 https://doi.org/10.5010/JPB.2005.32.2.091
  4. Cho MA, Song YM, Park YO, Ko SM, Min SR, Liu JR, Choi PS (2005a) The use of glufosinate as a selective marker for the transformation of cucumber (Cucumis sativus L.). Kor J Plant Biotechnol 32: 161-165 https://doi.org/10.5010/JPB.2005.32.3.161
  5. Cho MA, Min SR, Ko SM, Liu JR, Lee JH, Choi PS (2006) Use of paromomycin as a selectable marker for the transformation of Chinese cabbage. Kor J Plant Biotechnol 33: 271-276 https://doi.org/10.5010/JPB.2006.33.4.271
  6. Cho MA, Min SR, Ko SM, Liu JR, Choi PS (2008) Agrobacterium-mediated genetic transformation of radish (Raphanus sativus L.). Plant Biotechnol 25: 205-208 https://doi.org/10.5511/plantbiotechnology.25.205
  7. Choi PS, Komatsuda T, Kim MH, Choi KM, Choi DW, Liu JR (2002) Screening of soybean recombinant inbred lines for high competence somatic embryogenesis. Korean J Plant Biotechnol 29: 135-138 https://doi.org/10.5010/JPB.2002.29.2.135
  8. Dong JZ, Yang MZ, Jia SR, Chua NH (1991) Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35S promoter in transgenic melon plants. Biotechnol 9: 858-863 https://doi.org/10.1038/nbt0991-858
  9. Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnologythe importance of virus resistance. In Vitro Cell Dev Biol Plant 40: 346-358 https://doi.org/10.1079/IVP2004554
  10. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  11. Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26: 290-300 https://doi.org/10.1007/s00344-007-9017-4
  12. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: $\beta$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907
  13. Komatsuda T (1992) Research on somatic embryogenesis and plant regeneration in soybean. Natl Inst Agrobiol Resources (Japan), Ann Rep 7: 1-78
  14. Kwon JH, Park SM, Lim MY, Shin YS, Harn CH (2007) Genetic transformation of watermelon (Citrullus vulgaris Schard.) by callus induction. J Plant Biotechnol 34: 37-45 https://doi.org/10.5010/JPB.2007.34.1.037
  15. Lee HS, Kwon EJ, Kwon SY, Jeong YJ, Lee EM, Jo MH, Kim HS, Woo IS, Shinmyo A, Yoshida K, Kwak SS(2004) Transgenic cucumber fruits that produce elevated level of an anti-aging superoxide dismutase. Mol Breed 11: 213-220 https://doi.org/10.1023/A:1022894303834
  16. Lee YH, Kim HS, Kim JY, Jung M, Park YS, Lee JS, Choi SH, Her JH, Hyung NI, Lee CH, Yang SG, Harn CH (2004) A new selection method for pepper transformation: callus-mediated shoot formation. Plant Cell Rep 23: 50-58
  17. Muller B, Zumdick A, Schuphan I, Schmidt B (2001) Metabolism of the herbicide glufosinate ammonium in plant cell cultures of transgenic and non-transgenic sugarbeet, carrot, purple foxglove and thorn apple. Pest Manag Sci 57: 46-56 https://doi.org/10.1002/1526-4998(200101)57:1<46::AID-PS256>3.0.CO;2-1
  18. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  19. Nishibayashi S, Kayakawa T, Nakajima T, Suzuki M, Kaneko H (1996) CMV protection in transgenic cucumber plants with an introduced CMV-O cp gene. Theor Appl Genet 93: 672-678 https://doi.org/10.1007/BF00224061
  20. Roa-Rodriguez C, Nottenburg C (1999) NptII gene in combination with paromomycin as a selective agent. Patent EP 927765A1
  21. Saramento GG, Alpert K, Tang FA, Punja ZK (1992) Factors influencing Agrobacterium tumefaciens mediated transformation and expression of kanamycin resistance in pickling cucumber. Plant Cell Tiss Organ Cult 31: 185-193
  22. Selvaraj N, Vasudevan A, Manickavasagam M, Kasthurirengan S, Ganapathi A (2007) High frequency shoot regeneration from cotyledon explants of cucumber via organogenesis. Sci Horti 112: 2-8 https://doi.org/10.1016/j.scienta.2006.12.037
  23. Trulson AJ, Simpson RB, Shahin EA (1986) Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenesis. TAG 73: 11-15
  24. Vasudevan A, Selvaraj N, Ganapathi A, Choi CW (2007) Agrobacterium-mediated genetic transformation in cucumber (Cucumis sativus L.). Amer J Biotechnol Biochem 3: 24-32 https://doi.org/10.3844/ajbbsp.2007.24.32
  25. Woo JW, Jeong WJ, Choi KS, Park HG, Baek NK, Liu JR (2001) Production of herbicide-resistant transgenic plants from embryogenic suspension cultures of cucumber. Kor Plant Tiss Cult 28: 53-58

Cited by

  1. Development of transgenic cucumbers expressing Arabidopsis Nit gene vol.40, pp.4, 2013, https://doi.org/10.5010/JPB.2013.40.4.198
  2. The use of cotyledonary-node explants in Agrobacterium tumefaciensmediated transformation of cucumber (Cucumis sativus L.) vol.38, pp.3, 2011, https://doi.org/10.5010/JPB.2011.38.3.198
  3. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.) vol.14, pp.3, 2015, https://doi.org/10.1016/S2095-3119(14)60899-6
  4. Development of transgenic cucumber expressing TPSP gene and morphological alterations vol.37, pp.1, 2010, https://doi.org/10.5010/JPB.2010.37.1.072
  5. Production of transgenic cucumber expressing phytoene synthase-2A carotene desaturase gene vol.43, pp.3, 2016, https://doi.org/10.5010/JPB.2016.43.3.341