Molecular Analysis of Salmonella Enterotoxin Gene Expression

  • Lim, Sang-Yong (Department of Food Science and Technology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Seo, Ho-Seong (Department of Food Science and Technology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Yoon, Hyun-Jin (Department of Food Science and Technology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Choi, Sang-Ho (Department of Food Science and Technology, Chonnam National University) ;
  • Heu, Sung-Gi (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Ryu, Sang-Ryeol (Department of Food Science and Technology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2003.08.01

Abstract

Salmonella encodes an enterotoxin (Stn) which possesses biological activity similar to the cholera toxin. Stn contributes significantly to the overall virulence of S. typhimurium in a murine model. The production of Stn is enhanced in a high-osmolarity medium and by contact with epithelial cells. In the present study, the in vitro and in vivo transcriptional regulations of the sin promoter revealed two promoters, P1 and P2. The P1 promoter identified by a primer extension analysis of stn mRNA exhibited a switching mechanism in vivo. Depending on the growth stage, transcription was initiated from different start sites termed $P1_S\;and\;P1_E$. $P1_S$, recognized by RNA polymerase containing ${\sigma}^S(E{\sigma}^S),\;and\;P1_E$, recognized by $E{\sigma}^70$, were activated during the stationary and exponential phases, respectively, while $P1_S\;and\;P1_E$ were both negatively regulated by CRPㆍcAMP and H-NS. Results revealed that $P1_S$ was the responsible promoter activated under a high osmolarity and low pH. The P2 promoter was identified 45 nucleotides downstream from $P1_E$ and negatively controlled by CRPㆍcAMP in vitro. No P2 activity was detected in vivo. The regulation of stn expression monitored using a Pstn::egfp fusion indicated that $E{\sigma}^S$ was required for the induction of stn and various factors were involved in stn regulation inside animal cells.

Keywords

References

  1. Mol. Microbiol. v.24 H-NS;A modulator of environmentally regulated gene expression Atlung,T.;H.Ingmer https://doi.org/10.1046/j.1365-2958.1997.3151679.x
  2. Mol. Microbiol. v.40 RpoS cooperates with other factors to induce Legionella pneumophila virulence in the stationary phase Bachman,M.A.;M.S.Swanson https://doi.org/10.1046/j.1365-2958.2001.02465.x
  3. Infect. Immun. v.64 Expression of Salmonella typhimurium rpoS and rpoS-dependent genes in the intracellular evnionment of eukaryotic cells Chen,C.;L.Eckman;S.J.Libby;F.C.Fang;S.Okamoto;M.K.Kagnoff;J.Fierer;D.G.Guiney
  4. Microb. Pathog. v.16 Molecular characterization of an enterotoxin from Salmonella Typhimurium Chopra,A.K.;J.W.Peterson;P.Chary;R.Prased https://doi.org/10.1006/mpat.1994.1010
  5. Gene v.144 Improved synthesis of Salmonella typhimurium exterotoxin using gene fusion expression system Chopa,A.K.;A.R.Brasier;M.Das;X.J.Xu;J.W.Peterson https://doi.org/10.1016/0378-1119(94)90207-0
  6. Microb. Pathog. v.27 Role of Salmonella enterotoxin in overall virulence of the organism Chopa,A.K.;J.H.Huang;X.J.Xu;K.Burden;D.W.Niesel;M.W.Rosenbaum;V.L.Popov;J.W.Peterson https://doi.org/10.1006/mpat.1999.0294
  7. J. Mol. Biol. v.273 Role of DNA supercoiling and rpoS sigma factor in the csmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12 Conter,A.;C.Menchon;C.Gutierrez https://doi.org/10.1006/jmbi.1997.1308
  8. Mol. Microbiol. v.2 Virulence and vaccine potential of Salmonella typhimurium mutants deficient in the expression of the RpoS($б^s$) regulon Coynault,C.;V. Robbe-Saule;F.Norel
  9. FEMS Microbiol. Lett. v.146 Detection of the induction of Salmonella exterotoxin gene expression by contact with epithelial cells with RT-PCR Dinjus,U.;I.Hanel;W.Muller;R.Bauerfeind;R.Helmuth https://doi.org/10.1111/j.1574-6968.1997.tb10189.x
  10. Trends Microbiol. v.4 Flexible response:DNA supercoiling, transcription and bacterial adaptation to environmental stress Dorman,C.J. https://doi.org/10.1016/0966-842X(96)30015-2
  11. Mol. Microbiol. v.21 A consensus structure for $б^s$-depndent promoters Espinosa-Urgel, M.;C.Chamizo;A.Tormo https://doi.org/10.1111/j.1365-2958.1996.tb02573.x
  12. EMBO J. v.17 Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity:A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS Falconi,M.;B.Colonna;G.Prosseda;G.Micheli;C.O.Gualerzi https://doi.org/10.1093/emboj/17.23.7033
  13. Proc. Natl. Acad. Sci. USA v.89 The alternative sigma factor katF (rpoS) regulates Salmonella virulence Fang,F.C.;S.J.Libby;N.A.Buchmeier;P.C.Loewen;J.Switala;J.Harwood;D.G.Guiney https://doi.org/10.1073/pnas.89.24.11978
  14. FEMS Microbiol. Lett. v.17 Isolation and characterization of a cholera-related enterotoxin from Salmonella typhimurium Finkelstein,A.R.;B.A.Marchlewicz;J.R.McDonald;M. Boesman-Finkelstein https://doi.org/10.1111/j.1574-6968.1983.tb00409.x
  15. Infect. Immun. v.58 Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling Galan,J.E.;R.CurtissⅢ
  16. In Microbial Gene Techniques Techniques to isolate specialized templates for in vitro transcription assays Gargs,S.;H.E.Choy;S.Ryu;Adolph,K.W.(ed.)
  17. J. Bacteriol. v.175 Osmotic regulation of rpoS-dependent genes in Escherichia coli Hengge-Aronis, R.;R.Lange;N.Henneberg;D.Fischer
  18. Mol. Microbiol. v.21 Back to log phase: $б^s$ as a global regulator in the osmotic control of gene expression in Escherichia coli Hengge-Aronis, R. https://doi.org/10.1046/j.1365-2958.1996.511405.x
  19. Curr. Opin. Microbiol. v.2 Interplay of global regulators and cell physiology in the general stress response of Escherichia coli Hengge-Aronis, R. https://doi.org/10.1016/S1369-5274(99)80026-5
  20. Infect. Immun. v.63 The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors Iriarte,M.;I.Stainier;G.R.Cornelis
  21. J. Biol. Chem. v.76 Differential expression of Vibrio vulnificus elastase gene in a growth phase-dependent manner by two different types of promoters Jeong,H.S.;K.C.Jeong;H.K.Choi;K.J.Park;K.H.Lee;J.H.Rhee;S.H.Choi
  22. J. Bacterial. v.178 Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli:Intracellular levels of four species of sigma subunit under various growth conditions Jishage,M.;A.Iwata;S.Ueda;A.Ishihama
  23. J. Microbiol. Biotechnol. v.12 Identification and functional analysis of the putAP genes encoding Vibrio vulnificus proline dehydrogenase and proline permease Kim,H.J.;J.H.Lee;J.E.Rhee;H.S.Jeong;H.K.Choi;H.J.Chung;S.Ryu;S.H.Choi
  24. J. Bacteriol. v.176 The Salmonella typhimurium katF (rpoS) gene:Cloning, nucleotide sequence, and regulation of spvR and spvABCD virulence plasmid genes Kowartz,L.;C.Coynault;V. Robbe-Saule;F.Norel
  25. Genes Dev. v.8 The cellular concentration of the $б^s$ subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription translation, and protein stability Lange,R.;R. Hengge-Aronis https://doi.org/10.1101/gad.8.13.1600
  26. Mol. Microbiol. v.17 The stationary-phase sigma factor $б^s$ (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium Lee,I.S.;J.Lin;H.K.Hall;B.Bearson;J.W.Foster https://doi.org/10.1111/j.1365-2958.1995.mmi_17010155.x
  27. J. Microbiol. Biotechnol. v.11 Identification of a gene for aerobic growth with a SoxS binding sequence in Escherichia coli by operon fusion techniques Lee,Y.;H.Kwon;S.H.Lee;H.Kwon,H.C.Sung;J.Kim;M.Choe
  28. Proc. Natl. Acad. Sci. USA v.93 Macrophage killing is an essential virulence mechanism of Salmonella typhimurium Lindgren,S.W.;I.Stojiljkovic;F.Heffron https://doi.org/10.1073/pnas.93.9.4197
  29. J. Bacteriol. v.179 Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli:Application to open reading rfame characterization Link,A.J.;D.Phillips;G.M.Church
  30. Can. J. Microbiol. v.44 Regulation in the rpoS regulon of Escherichia coli Loewen,P.C.;B.Hu;J.Strutinsky;R.Sparling https://doi.org/10.1139/cjm-44-8-707
  31. Microbiol. Rev. v.60 Strategies for achieving high-level expression of genes in Escherichia coli Makrides,S.C.
  32. Phil. Trans. R. Soc. Lond. B. Biol. Sci. v.355 DNA topology and adaptation of Salmonella typhimurium to an intracellular environment Marshall,D.G.;F.Bowe;C.Hale;G.Dougan;C.J.Dorman https://doi.org/10.1098/rstb.2000.0598
  33. J. Bacteriol. v.174 Environmental signals controlling expression of virulence determinants in bacteria Mekalanos,J.J.
  34. J. Bacteriol. v.178 Posttranscriptional osmotic regulation of the $б^s$ submit of RNA polymerase in Escherichia coli Muffler,A.;D.D.Traulsen;R.Lange;R. Hengge-Aronis
  35. J. Bacteriol. v.179 Heat shock regulation of $б^s$ turnover:A role for DnaK and relationship between stress responses mediated by $б^s$ and $б^{32}$ in Escherichia coli Muffler,A.;M.Barth;C.Marschall;R. Hengge-Aronis
  36. Infect. Immun. v.65 Role of sigme factor RpoS in initial stage of Salmonella typhimurium infaction Nickerson,C.A.;R.CurtissⅢ
  37. J. Bacteriol. v.177 Glucose starvation stimulon of Escherichia coli: Role of integration host factor in starvation survival and growth phase-dependent protein synthesis Nystrom,T.
  38. FEMS Immunol. Med. Microbiol. v.12 Salmonella enterotoxin (stn) gene is prevalent among strains of Salmonella enterica, but not among Salmonella bongori and other Enterobacteriaceae Prager,R.;A.Fruth;H.Tschape https://doi.org/10.1111/j.1574-695X.1995.tb00173.x
  39. Microb. Pathog. v.9 Biological and immunological characterization of a cloned cholera toxin-like enterotoxin from Salmonella typhimurium Prasad,R.;A.K.Chopra;J.W.Peterson;R.Pericas;C.W.Houston https://doi.org/10.1016/0882-4010(90)90066-Y
  40. Microb. Pathog. v.13 Expression and characterization of the cloned Salmonella typhimurium enterotoxin Prasad,R.;A.K.Chopra;R.Chary;J.W.Peterson https://doi.org/10.1016/0882-4010(92)90071-U
  41. Biochim. Biophys. Acta v.1219 Cloning and sequencing of the gene encoding the RpoS(KatF) б factor from Salmonella thphimurium 14028s Prince,R.W.;Y.Xu;S.J.Libby;F.C.Fang https://doi.org/10.1016/0167-4781(94)90271-2
  42. Indian J. Exp. Biol. v.37 Induction of Salmonella enterotoxin(stn) gene expression by epithelial cells(IEC-6) Rahman,H.;H.Tschape
  43. J. Biol. Chem. v.269 Promoter switch in the Escherichia coli pts operon Ryu,S.;S.Garges
  44. J. Biol. Chem. v.276 Heat shock RNA polymerase (E$б^{32}$) is involved in the transcription of mlc and crucial for induction of the Mlc regulon by glucose in Escherichia coli Shin,D.;S.Lim;Y.J.Seok,;S.Ryu https://doi.org/10.1074/jbc.M101757200
  45. Infect. Immun. v.65 Avirulence of LT2 strains of Salmonella typhimurium results from a defective rpoS gene Swords,W.E.;B.M.Cannon;W.H.Benjamin
  46. Proc. Natl. Acad. Sci. USA v.90 Heterogeneity of the principal factor in Escherichia coli:The rpoS gene product is a secondary principal factor of RNA polymerase in stationary-phase Tanaka,K.;Y.Takayanagi;N.Fujita;A.Ishihama;H.Takahashi https://doi.org/10.1073/pnas.90.8.3511
  47. Mol. Microbiol. v.22 Bacterial genetics by flow cytometry: Rapid isolation of Salmonella typhimurium acid-inducible prometers by differential fluorescence induction Valdivia,R.H.;S.Falkow https://doi.org/10.1046/j.1365-2958.1996.00120.x
  48. Adv. Exp. Med. Biol. v.473 Sips, Sops and SPIs but not stn influence Salmonella enteopathogenesis Wallis,T.S.;M.Wood;P.Watson;S.Paulin;M.Jones;E.Galyov https://doi.org/10.1007/978-1-4615-4143-1_29
  49. Mol. Microbiol. v.36 Molecular basis of Salmonella-induced enteritis Wallis,T.S.;E.E.Galyov https://doi.org/10.1046/j.1365-2958.2000.01892.x
  50. Infect. Immun. v.66 Mutations of invH, but not stn, reduces Salomonella-induced enteritis in cattle Watson,P.R.;E.E.Galyov;S.M.Paulin;P.W.Jones;T.S.Wallis
  51. Infect. Immun. v.65 An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2 Wilmes-Riesenberg, M.R.;J.W.Foster;R.CurtissⅢ
  52. J. Bacteriol. v.180 Role of rpoS in stress survival and virulence of Vibro cholerae Yildiz,F.H.;G.K.Schoolnik