• Title/Summary/Keyword: Plant cell

Search Result 3,356, Processing Time 0.028 seconds

Relationship between ganglioside expression and anti-cancer effects of a plant-derived antibody in breast cancer cells

  • Ju, Won Seok;Song, Ilchan;Park, Se-Ra;Seo, Sang Young;Cho, Jin Hyoung;Min, Sung-Hun;Kim, Dae-Heon;Kim, Ji-Su;Kim, Sun-Uk;Park, Soon Ju;Ko, Kisung;Choo, Young-Kug
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.217-227
    • /
    • 2019
  • Production of therapeutic monoclonal antibodies (mAbs) using a plant platform has been considered an alternative to the mammalian cell-based production system. A plant-derived mAb CO17-1AK ($mAb^P$ COK) can specifically bind to various types of cancer cell lines. The target protein of $mAb^P$ COK is the epithelial cell adhesion molecule (EpCAM) highly expressed in human epithelial cancer cells, including breast and colorectal cancer cells. It has been hypothesized that its overexpression supports tumor growth and metastasis. A ganglioside is extended well beyond the surfaces of the various cell membranes and has roles in cell growth, inflammation, differentiation, and carcinogenesis. However, the regulation of EpCAM gene expression in breast cancers and the role of gangliosides in oncogenesis are unclear. Here, the purpose of this study was to determine the effects of $mAb^P$ COK on human breast cancer cell proliferation, apoptosis, and ganglioside expression patterns. Our results show that treatment with $mAb^P$ COK suppressed the growth of breast cancer cells and induced apoptotic cell death. It also upregulated the expression of metastasis-related gangliosides in breast cancer cells. Thus, treatment with $mAb^P$ COK may have chemo-preventive therapeutic effects against human breast cancer.

Partial Desiccation of Embryogenic Calli Improves Plant Regeneration in Sugarcane (Saccharum Spp.)

  • Desai Neetin Shivajirao;Suprasanna Penna;Bapat Viswas Ananat
    • Journal of Plant Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.229-233
    • /
    • 2004
  • Partial desiccation of embryogenic calli cultures or somatic embryos leads to different physiological changes and maturation of somatic embryos, leading to improved plant regeneration. Embryogenic calli was induced from immature inflorescence segments and young leaf rolls of sugarcane (Saccharum officinarum hybrids CoC-671) on Murashige and Skoog's basal medium enriched with different concentrations of 2,4-D ($1-4\;\cal{mg/l}$), L-glutamine ($100\cal{mg/l}$), malt extract ($100\cal{mg/l}$), casein hydrolysate ($1000\;\cal{mg/l}$) and coconut milk ($5\%$) and solidified with $0.2\%$ gel rite. The embryogenic calli were subjected to desiccation for 1-8 h. Desiccation of the calli for 6-7 h resulted in enhancement of plant regeneration frequency ($83-96\%$) as compared to control ($12\%$). Plantlets exhibited vigorous growth to maturity in the greenhouse. Partial desiccation of embryogenic calli offers as a simple method for improving plant regeneration frequency in sugarcane.

Calcineurin-Responsive Transcription Factor CgCrzA Is Required for Cell Wall Integrity and Infection-Related Morphogenesis in Colletotrichum gloeosporioides

  • Wang, Ping;Li, Bing;Pan, Yu-Ting;Zhang, Yun-Zhao;Li, De-Wei;Huang, Lin
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.385-397
    • /
    • 2020
  • The ascomycete fungus Colletotrichum gloeosporioides infects a wide range of plant hosts and causes enormous economic losses in the world. The transcription factors (TFs) play an important role in development and pathogenicity of many organisms. In this study, we found that the C2H2 TF CgCrzA is localized in both cytoplasm and nucleus under standard condition, and it translocated from cytoplasm to nucleus in a calcineurin-dependent manner. Moreover, the ΔCgCrzA was hypersensitive to cell wall perturbing agents and showed severe cell wall integrity defects. Deletion of the CgCRZA inhibited the development of invasive structures and lost pathogenicity to plant hosts. Our results suggested that calcineurin-responsive TF CgCrzA was not only involved in regulating cell wall integrity, but also in morphogenesis and virulence in C. gloeosporioides.

Molecular Cloning and Expression of Dihydroflavonol 4-reductase Gene in Tuber Organs of Purple-fleshed Potatoes

  • Kang, Won-Jin;Lee, Yong-Hwa;Kim, Hyun-Soon;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.75-81
    • /
    • 2006
  • A full-length cDNA encoding dihydroflavonol 4-reductase (st-dfr) of potato was isolated by rapid amplification of cDNA ends, and their expression was investigated from purple-fleshed potato (Solanum tuberosum L. cv. Jashim). The st-dfr exists as a member of a small gene family and its transcripts was abundant in the order of tuber flesh, stem, leaf, and root. The expressions of st-dfr gene were light inducible and cultivar dependant. Transgenic potato plants harboring antisense st-dfr (AS-DFR) sequences were analyzed. The accumulation of mRNA was nearly completely inhibited as a result of introducing an AS-DFR gene under the control of the 35S CaMV promoter into the red tuber skin Solanum tuberosum L. cv. Desiree. The anthocyanin content of the tuber peels of the transgenic lines was dramatically decreased by up to 70%. The possible production of flavonols in the peels of AS-DFR transgenic potatoes was discussed.

The Use of a Decanter for Harvesting Biomass rom plant Cell Cultures (데칸터를 이용한 텍서스속 식물세포 회수)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.337-341
    • /
    • 2000
  • The decanter is very useful to harvest biomass from plant cell cultures in large-scale process. It is very important to obtain high yield and low moisture content in recovered biomass so as to minimize solvent usage in subsequent extraction steps. Effluent clarity was also affected by the differential speed although this affect was more dramatic at higher flow rates than at lower flow rates. Moisure content was largely unaffected by flow rate. A decrease in moisture content was evident as differential speed decreased.

  • PDF

Growth Characteristics of Spinaches by Nursery Media and the Seeding Number Per Plug Tray Cell in Hydroponics (시금치의 육묘배지와 파종 종자량에 따른 수경재배 생육 특성)

  • Seo, Jong-Bun;Jung, Jong-Mo;Kim, Sun-Kook;Choi, Kyong-Ju;Kim, Joung-Geun;Hong, Sae-Jin
    • Journal of Bio-Environment Control
    • /
    • v.16 no.1
    • /
    • pp.62-66
    • /
    • 2007
  • This study was carried out to develop the stable plug seedling production for hydroponics of spinaches by various nursery media, plug tray size and seed number per plug tray cell. When plant grown in various nursery media, the seeding stand rate was shown in order of granular rockwool with good water retention, granular rockwool>granular rockwool mixed with pearlite>cocopeat>pearlite>poly urethane foame. Thus, poly urethane foame indicated the lower seedling stand rate. There was no difference in growth of the seedlings md the seeding stand rate by the plug tray size, and no significant difference in the plant height and the number of leaves among the seed number per plug tray cell. But, leaf area of plant in 2 grains seeding per cell was $113.0cm^2$, was wider in compared with 5 grains seeding of which leaf area was $88.0cm^2$. Accordingly, the leaf area per plant decreased as more and more the number of seeds per plug tray cell increased. The fresh weight of a plant per plug tray cell was the heaviest with 12.5g in the 2 grains, and the total fresh weight of plants per cell was 33.9g in 4 grains seeding, thus it tended to was bigger compared with other treatments. Consequently, given that the number of seeds per cell was decreased, the fresh weight of a plant increased. On the other hand, the total fresh weight per cell showed a tendency to be reducing as more and more the number of seeds per plug tray cell decreased. The yield in the 4 grains seeding was increased by 46% as $14,910kg{\cdot}ha^{-1}$ in compared with the yield in 2 grains seeding as $10,200kg{\cdot}ha^{-1}$.

Update on the Effects of Sound Wave on Plants

  • Chowdhury, Md. Emran Khan;Lim, Hyoun-Sub;Bae, Hanhong
    • Research in Plant Disease
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Plant growth is considered the sum of cell proliferation and subsequent elongation of the cells. The continuous proliferation and elongation of plant cells are vital to the production of new organs, which have a significant impact on overall plant growth. Accordingly, the relationship between environmental stimuli, such as temperature, light, wind, and sound waves to plant growth is of great interest in studies of plant development. Sound waves can have negative or positive effects on plant growth. In this review paper we have summarized the relationship between sound waves and plant growth response. Sound waves with specific frequencies and intensities can have positive effects on various plant biological indices including seed germination, root elongation, plant height, callus growth, cell cycling, signaling transduction systems, enzymatic and hormonal activities, and gene expression.

Inhibition Activity of Plants on IgE-mediated Degranulation of RBL-2H3 Cells

  • Lee, Seung-Eun;Jeong, Hye-Gwang;Lee, Dae-Young;Lee, Jeong-Hoon;Choi, Jehun;Kim, Geum-Soog;Noh, Hyung-Jun;Lee, Jae-Won;Kim, Seung-Yu;Ahn, Young-Sup
    • Korean Journal of Plant Resources
    • /
    • v.28 no.6
    • /
    • pp.718-726
    • /
    • 2015
  • In this study, the inhibitory activities of fifty plant extracts on IgE-mediated degranulation in the rat basophilic leukemia cell line (RBL-2H3 cells) were measured; the release of interleukin (IL)-4 and β-hexosaminidase from IgE-sensitized cells treated with the plant extracts was measured; and the effects of the plant extracts on cell viability were tested. The results of the analysis of plant extracts at 20 μg/ml, including the aerial part of Magnolia sieboldii K. Koch, exhibited suppressive activities upon the release of IL-4. Furthermore, several plant extracts including methanol extracted from Lindera erythrocarpa Makino (aerial part) at the same concentration significantly inhibited the release of β-hexosaminidase. Twenty-six of the plant extracts, including methanol extract of Weigela subsessilis (Nakai) L. H. Bailey (branch), showed a cell proliferation effect of over 80% at 100 μg/ml. In conclusion, the results suggest that the leaf/stem of Geum japonicum Thunb. and the stamen/ovary of Nelumbo nucifera Gaertn., which exhibited effective inhibition on β-hexosaminidase release and IL-4 release from mast cells and showed high cell viability, could be useful candidates as anti-allergy materials.

Changes of Chloroplast Number per Guard Cell pairs of Leaves by Ploidy Level in Nicotiana tabacum L. cv. BY-4 (담배 식물체[Nicotiana tabacum L. cv. BY-4]의 배수성에 따른 공변세포의 엽록체 수 변화)

  • 배창휴;이연희;양덕춘;민경수;김호일;이호연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.4
    • /
    • pp.179-184
    • /
    • 2001
  • We evaluated a possibility of the use of chloroplast number per guard cell pairs as a measure for ploidy level in the different ploidy levels of tobacco plant (Nicotiana tabacum L. cv. BY-4) . The guard-cell chloroplast numbers of leaves of haploid plant were a half of wild-type plant. Furthermore, the number of chloroplast per guard cell pairs of the leaves of doubled-haploid plant increased in two times compared with that of haploid plant. In addition, the chloroplast number was not changed in the F$_1$ progenies. The change of the chloroplast number by leaf stage was not observed. The results indicate that there is a strong relationship between ploidy level (2x and 4x) and chloroplast number per guard cell pairs. This relationship was also, observed in both in vitro and pot cultured plants. It was determined that the measurement of chloroplast number in guard cells of leaf epidermis is simple to use and less labour intensive, and hence can be considered a practical alternative to the chromosome counting methods or flow cytometry in the tobacco plant.

  • PDF

Exergetic and Thermoeconomic Analysis of a 200kW Phosphoric Acid Fuel Cell Plant (200kW 인산형 연료전지 발전시스템의 엑서지-열경제학적 해석)

  • Jeon, J.;Kwak, H.;Lee, H.;Choi, D.;Park, D.;Cho, Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.689-696
    • /
    • 2001
  • Exergetic and thermoeconomic analysis were performed for a 200kW Phosphoric Acid Fuel Cell(PAFC) plant which offers many advantage for cogeneration in the aspect of high electrical efficiency and low emission. This analytical study was based on the data obtained by in-field measurement of PC25 fuel cell plant to find whether this system is viable economically. For 100% load condition, the electrical efficiency and the unit cost of electricity are about 45% and 0.032 $/kWh respectively, which turn out to be much better than those for the 1000kW gas turbine cogeneration plant. Further, at lower loads, the unit costs of electricity and hot water increase slightly and consequently more economic operation is possible at any loads.

  • PDF