DOI QR코드

DOI QR Code

Update on the Effects of Sound Wave on Plants

  • Chowdhury, Md. Emran Khan (School of Biotechnology, Yeungnam University) ;
  • Lim, Hyoun-Sub (Department of Applied Biology, Chungnam National University) ;
  • Bae, Hanhong (School of Biotechnology, Yeungnam University)
  • Received : 2013.10.15
  • Accepted : 2014.02.20
  • Published : 2014.03.31

Abstract

Plant growth is considered the sum of cell proliferation and subsequent elongation of the cells. The continuous proliferation and elongation of plant cells are vital to the production of new organs, which have a significant impact on overall plant growth. Accordingly, the relationship between environmental stimuli, such as temperature, light, wind, and sound waves to plant growth is of great interest in studies of plant development. Sound waves can have negative or positive effects on plant growth. In this review paper we have summarized the relationship between sound waves and plant growth response. Sound waves with specific frequencies and intensities can have positive effects on various plant biological indices including seed germination, root elongation, plant height, callus growth, cell cycling, signaling transduction systems, enzymatic and hormonal activities, and gene expression.

Keywords

References

  1. Apodaca, G. 2002. Modulation of membrane traffic by mechanical stimuli. Am. J. Physiol. Renal. Physiol. 282: 179-190. https://doi.org/10.1152/ajprenal.2002.282.2.F179
  2. Bais, H. P. and Ravishankar, G. A. 2002. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss. Org. 69: 1-34. https://doi.org/10.1023/A:1015064227278
  3. Bilgin, D. D., Zavala, J. A., Zhu, J., Clough, S. J., Ort, D. R. and Delucia, E. H. 2010. Biotic stress globally down regulates photosynthetic genes. Plant Cell Environ. 33: 1597-1613. https://doi.org/10.1111/j.1365-3040.2010.02167.x
  4. Bochu, W., Yoshikoshi, A. and Sakanishi, A. 1998. Carrot cell growth response in a stimulated ultrasonic environment. Colloid. Surface B 12: 89-95. https://doi.org/10.1016/S0927-7765(98)00061-7
  5. Bochu, W., Hucheng, Z., Yiyao, L., Yi, J. and Sakanishi, A. 2001. The effects of alternative stress on the cell membrane deformability of Chrysanthemum cells. Colloid. Surface B 20: 321-325. https://doi.org/10.1016/S0927-7765(00)00181-8
  6. Bochu, W., Xin, C., Zhen, W., Qizhong, F., Hao, Z. and Liang, R. 2003. Biological effect of sound field stimulation on paddy rice seeds. Colloid. Surfaces B 32: 29-34. https://doi.org/10.1016/S0927-7765(03)00128-0
  7. Braam, J. and Davis, R. W. 1990. Rain-, wind- and touched-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60: 357-364. https://doi.org/10.1016/0092-8674(90)90587-5
  8. Braam, J. 1992. Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc. Natl. Acad Sci. USA 89: 3213-3216. https://doi.org/10.1073/pnas.89.8.3213
  9. Braam, J., Sistrunk, M. L., Polisensky, D. H., Xu ,W., Purugganan, M. M., Antosiewicz, D. M., Campbell, P. and Johnson, K. A. 1997. Plant responses to environmental stress: regulation and function of the Arabidopsis TCH genes. Planta 203: 35-41.
  10. Braam, J. 2005. In touch: plant responses to mechanical stimuli. New Phytol. 165: 373-389.
  11. Bush, D. S. 1995. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 95-122. https://doi.org/10.1146/annurev.pp.46.060195.000523
  12. Chuanren, D., Bochu, W., Wangian, L., Jinc, C., Jie, L. and Huan, Z. 2004. Effect of chemical and physical factors to improve the germination rate of Echinacea angustifolia seeds. Colloid. Surface B 37: 101-105. https://doi.org/10.1016/j.colsurfb.2004.07.003
  13. Collins, M. E. and Foreman, J. E. K. 2001. The effect of sound on the growth of plants. Can. Acoust. 29: 2-7.
  14. Creath, K. and Schwartz, G. E. 2004. Measuring effects of music, noise, and healing energy using a seed germination bioassay. J. Altern. Complement Med. 10: 113-122.
  15. Currier, H. B. and Webster, D. H. 1964. Callose formation and subsequent disappearance: studies in ultrasound stimulation. Plant Physiol. 39: 843-847. https://doi.org/10.1104/pp.39.5.843
  16. Dorrell, P. 2005. What is music? solving a scientific mystery. http://www.amazon.com/What-Music-Solving-Scientific-Mystery/dp/1411621174
  17. Ekici, N., Dane, F., Mame dova, L., Metin, I. and Huseyinov, M. 2007. The effects of different musical elements on root growth and mitosis in onion (Allium cepa) root apical meristem (musical and biological experimental study). Asian J. Plant Sci. 6: 369-373. https://doi.org/10.3923/ajps.2007.369.373
  18. Evans, P. T. and Malmberg, R. L. 1989. Do polyamines have a role in plant development? Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:235-269. https://doi.org/10.1146/annurev.pp.40.060189.001315
  19. Fraze, L. N. and Moor, D. 1996. The role of calcium accumulation and cytosketetal elements in perception and response of Coprinus cinerous to gravity. Adv. Space Res. 17: 87-90. (Abstracts)
  20. Gadjev, I., Vanderauwera, S., Gechev, T. S., Laloi, C., Minkov, I. N., Shulaev, V., Apel, K., Inzé, D., Mittler, R. and Breusegem, F. V. 2006. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 141: 436-445. https://doi.org/10.1104/pp.106.078717
  21. Grouzis, J. P., Gibrat, R., Rigaud, J., Ageorges, A. and Grignon, C. 1990. Potassium stimulation of com root plasma lemma ATPase by glucose. Plant Physiol. 93: 1175-1182. https://doi.org/10.1104/pp.93.3.1175
  22. Hageseth, G. T. 1974. Effect of noise on the mathematical parameters that describe isothermal seed germination. Plant Physiol. 53: 641-643. https://doi.org/10.1104/pp.53.4.641
  23. Hongbo, S., Biao, L., Bochu, W., Kun, T. and Yilong, L. 2008. A study on differentially expressed gene screening of Chrysanthemum plants under sound stress. C R Biol. 331: 329-333. https://doi.org/10.1016/j.crvi.2008.02.007
  24. Hou, T. Z., Luan, J. Y., Wang, J. Y. and Li, M. D. 1994. Experimental evidence of a plant meridian system III. The sound characteristic of phylodentron (Alocasia) and the effects of Acupuncture on those properties. Am. J. Chin. Med. 22: 205-214. https://doi.org/10.1142/S0192415X94000267
  25. Hou, T. Z. and Mooneyham, R. E. 1999. Applied studies of plant meridian systems: 1. The effect of Agri-wave technology on yield and quality of tomato. Am. J. Chin. Med. 27: 1-10. https://doi.org/10.1142/S0192415X99000021
  26. Jaffe, M. J., Leopold, A. C. and Staples, R. A. 2002. Thigmo responses in plants and fungi. Am. J. Bot. 89: 375-382. https://doi.org/10.3732/ajb.89.3.375
  27. Jeong, M. J., Shim, C. K., Lee, J. O., Kwon, H. B., Kim, Y. H., Lee, S. K., Byun, M. O. and Park, S. C. 2008. Plant gene responses to frequency-specific sound signals. Mol. Breeding 21: 217-226. https://doi.org/10.1007/s11032-007-9122-x
  28. Jun, H. and Shiren, Y. 2011. Effect of six different acoustic frequencies on growth of cowpea (Vigna unguiculata) during its seedling stage. Agr. Sci. Tech. 12: 847-851.
  29. Keli, S., Baoshu, X., Guoyou, C. and Ziwei, S. 1999. The effects of alternative stress on the thermodymical properties of cultured tobacco cells. Acta Bio. Phys. Sin. 15: 579-584.
  30. Li, B., Wei, J., Wei, X., Tang, K., Liang, Y., Shu, K. and Wang, B. C. 2008. Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum. Colloid. Surface B 63: 269-275. https://doi.org/10.1016/j.colsurfb.2007.12.012
  31. Liu, Y. Y., Wang, B. C., Zhao, H. C., Duan, C. R. and Chen, X. 2001. Alternative stress effects on Ca2+ localization in Chrysanthemum callus cells. Colloid. Surface B 22: 245-249. https://doi.org/10.1016/S0927-7765(01)00163-1
  32. Liu, Y., Yoshikoshi, A., Wang, B. and Sakanishi, A. 2003. Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus cells. Colloid. Surface B 27: 287-293. https://doi.org/10.1016/S0927-7765(02)00052-8
  33. Liu, Y., Yang, H., Takatsuki, H. and Sakanishi, A. 2006. Effect of ultrasonic exposure on $Ca^{2+}$-ATPase activity in plasma membrane from Aloe arborescens callus cells. Ultrason Sono. Chem. 13: 232-236. https://doi.org/10.1016/j.ultsonch.2005.03.005
  34. Measures, M. and Weinberger, P. 1973. Effects of an audible sound frequency on total amino acids and major free alcohol-soluble amino acids of Rideau wheat grains. Can. J. Plant Sci. 53: 737-742. https://doi.org/10.4141/cjps73-143
  35. Meng, Q., Zhou, Q., Zheng, S. and Gao, Y. 2012. Responses on photosynthesis and variable chlorophyll fluorescence of Fragaria ananassa under sound wave. Energy Procedia 16: 346-352. https://doi.org/10.1016/j.egypro.2012.01.057
  36. Michelet, B. and Boutry, M. 1995. The plasma membrane $H^+$-ATPase. (A highly regulated enzyme with multiple physiological functions). Plant Physiol. 108: 1-6. https://doi.org/10.1104/pp.108.1.1
  37. Pierce, A. D. 1989. The Wave Theory of Sound. Acoustics: An Introduction to Its Physical Principles and Applications. New York. Acoustical Society of America.
  38. Qi, L., Teng, G., Hou, T., Zhu, B. and Liu, X. 2010. Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse. IFIP. AICT 317, pp 449-454.
  39. Qin, Y. C., Lee, W. C., Choi, Y. C. and Kim, T. W. 2003. Biochemical and physiological changes in plants as a result of different sonic exposures. Ultrasonics 41: 407-411. https://doi.org/10.1016/S0041-624X(03)00103-3
  40. Retallack, D. L. 1973. The Sound of Music and Plants. Devorss & Co., Santa Monica, CA, USA. 96 pp.
  41. Rooke, A. 1985. Searching for the lost chord: ancient uses and modern yrends, Sunrise Magazine, Dec 1985/Jan1986 and Feb/March1986; Theosophical University Press. http://www.theosophy-nw.org/theosnw/arts/ar-rook.htm
  42. Seregin, I. V. and Ivanov, V. B. 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J. Plant Physiol. 48: 523-544. https://doi.org/10.1023/A:1016719901147
  43. Serrano, R. 1989. Structure and function of plasma membrane ATPase. Annu. Rev Plant Physiol. Plant Mol. Biol. 40: 61-94. https://doi.org/10.1146/annurev.pp.40.060189.000425
  44. Shaobin, G., Wu, Y., Li, K., Li, S., Ma, S., Wang, Q. and Wang, R. 2010. A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloid. Surface B 78: 367-371. https://doi.org/10.1016/j.colsurfb.2010.02.028
  45. Shors, J. D., Soll, D. R., Daniels, K. J. and Gibson, D. P. 1999. Method for enhancing germination. Patent number. 5,950,362.
  46. Sistrunk, M. L., Antosiewicz, D. M., Purugganan, M. M. and Braam, J. 1994. Arabidopsis TCH encodes a novel $Ca^{2+}$ binding protein and shows environmentally induced and tissue specific regulation. Plant Cell 6: 1553-1565.
  47. Spillane, M. 1991. Brave new waves. TCI for Plants. 6: 36.
  48. Subramanian, S., Chandrasekharan, P., Madhava-Menon, P., Raman, V. S. and Ponnaiya, B. W. X. 1969. A study of the effect of music on the growth and yield of paddy. Madras Agr. J. 56: 510-516.
  49. Takahashi, H., Suge, H. and Kato, T. 1991. Growth promotion by vibration at 50 Hz in rice and cucumber seedlings. Plant Cell Physiol. 32: 729-732. https://doi.org/10.1093/oxfordjournals.pcp.a078137
  50. Telewski, F. W. 2006. A unified hypothesis of mechanoperception in plants. Am. J. Bot. 93: 1466-1476. https://doi.org/10.3732/ajb.93.10.1466
  51. Tian, Z. H., Bao, M. L., Guang, H. T., Quing, Z., Ying, P. X. and Li, R. Q. 2009. Application of acoustic frequency technology to protected vegetable production. T. Chinese Soc. Agr. Eng. 25: 156-160.
  52. Tompkins, P. and Bird, C. 1989. The secret life of plants. Harper collins.
  53. Uchida, A. and Yamamoto, K. T. 2002. Effects of mechanical vibration on seed germination of Arabidopsis thaliana (L) Heynh. Plant Cell Physiol. 43: 647-651. https://doi.org/10.1093/pcp/pcf079
  54. Wang, B., Zhao, H., Wang, X., Duan, C., Wang, D. and Sakanishi, A. 2002. Influence of sound stimulation on plasma membrane $H^+$-ATPase activity. Colloid Surface B 25: 183-188. https://doi.org/10.1016/S0927-7765(01)00320-4
  55. Wei, M., Yang, C. and Wei, S. 2012. Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. Plant Physiol. 169: 770-774. https://doi.org/10.1016/j.jplph.2012.01.018
  56. Weinberger, P. and Measures, M. 1979. Effects of the intensity of audible sound on the growth and development of Rideau winter wheat. Can. J. Bot. 57: 1036-1039. https://doi.org/10.1139/b79-128
  57. Weinberger, P. and Burton, C. 1981. The effects of sonication on the growth of some tree seeds. Can. J. For. Res. 11: 840-844. https://doi.org/10.1139/x81-123
  58. Wicke, R. W. 2002. Effect of music and sound on human health. http://www.rmhiherbal.org/review/2002-1.html Herbalist Review, Issue:1.
  59. Xiao, H. 1990. Vegetables and music. Pictorial. Sci. 6: 36.
  60. Xiaocheng, Y., Bochu, W., Chuanren, D. and Yi, J. 2003a. Effects of sound stimulation on ATP content of Actinidia chinensis callus. J. Chinese Biotechnol. 23: 95-97.
  61. Xiaocheng, Y., Bochu, W. and Chuanren, D. 2003b. Effects of sound stimulation on energy metabolism of Actinidia chinensis callus. Colloid. Surface B 30: 67-72. https://doi.org/10.1016/S0927-7765(03)00027-4
  62. Xiujuan, W., Bochu, W, Yi, J., Danqun, H. and Chuanren, D. 2003a. Effect of sound stimulation on cell cycle of chrysanthemum (Gerbera jamesonii). Colloid. Surface B 29: 103-107. https://doi.org/10.1016/S0927-7765(02)00153-4
  63. Xiujuan, W., Bochu, W., Yi, J., Defang, L., Chuanren, D., Xiaocheng, Y. and Sakanishi, A. 2003b. Effects of sound stimulation on protective enzyme activities and peroxidase isoenzymes of Chrysanthemum. Colloid Surface B 27: 59-63. https://doi.org/10.1016/S0927-7765(02)00038-3
  64. Xiujuan, W., Bochu, W., Yi, J., Chuanren, D. and Sakanishi, A. 2003c. Effect of sound wave on the synthesis of nucleic acid and protein in Chrysanthemum. Colloid. Surface B 29: 99-102. https://doi.org/10.1016/S0927-7765(02)00152-2
  65. Yang, X., Wang, B., Liu, Y., Duan, C. and Dai, C. 2002. Biological effects of Actinidia chinensis callus on mechanical vibration. Colloid Surface B 25:197-203. https://doi.org/10.1016/S0927-7765(01)00321-6
  66. Yi, J., Bochu, W., Xiujuan, W., Chuanren, D. and Xiaocheng, Y. 2003a. Effect of sound stimulation on roots growth and plasmalemma $H^+$-ATPase activity of chrysanthemum (Gerbera jamesonii). Colloid. Surface B 27: 65-69. https://doi.org/10.1016/S0927-7765(02)00037-1
  67. Yi, J., Bochu, W., Xiujuan, W., Daohong, W., Chuanren, D., Toyama, Y. and Sakanishi, A. 2003b. Effect of sound wave on the metabolism of chrysanthemum roots. Colloid. Surface B 29: 115-118. https://doi.org/10.1016/S0927-7765(02)00155-8
  68. Yi, J., Bochu, W., Xiujuan, W., Chuanren, D., Toyama, Y. and Sakanishi, A. 2003c. Influence of sound wave on the microstructure of plasmalemma of chrysanthemum roots. Colloid. Surface B 29: 109-113. https://doi.org/10.1016/S0927-7765(02)00154-6
  69. Yiyao, L., Wang, B., Xuefeng, L., Chuanren, D. and Sakanishi, A. 2002. Effects of sound field on the growth of Chrysanthemum callus. Colloid. Surface B 24: 321-326. https://doi.org/10.1016/S0927-7765(01)00275-2
  70. Zhao, H., Wang, B., Liu, Y, Duan, C., Cai, S. and Sakanishi, A. 2000. Influence of water stress on the lipid physical state of plasma membranes from P. betuloefocia leaves. Colloid. Surface B 19: 181-185. https://doi.org/10.1016/S0927-7765(00)00153-3
  71. Zhao, H., Wang, B., Cai, S. and Xi, B. 2002. Effect of sound stimulation on the lipid physical states and metabolism of plasma membrane from Chrysanthemum callus. Acta Bot. Sin. 44: 799-803.
  72. Zhao, H., Wu, J., Zheng, L., Zhu, T., Xi, B., Wang, B., Cai, S. and Younian, W. 2003. Effect of sound stimulation on Dendranthema morifolium callus growth. Colloid. Surface B 29: 143-147. https://doi.org/10.1016/S0927-7765(02)00184-4
  73. Zhou, Q., Qu, Y. H., Li, B. M., Hou, T. Z., Zhu, B. Y. and Wang, D. 2010. Effects of sound frequency treatment on plant characters and chlorophyll fluorescence of the strawberry leaf. J. China Agr. Uni. 1: 111-115.
  74. Ziwei, S., Keli, S., Jun, Y., Guoyuo, C. and Baoshu, X. 1999. The secondary structure changes of plant cell wall proteins aroused by strong sound waves using FT-IR. Acta Photo. Sin. 28: 600-602.

Cited by

  1. Antibacterial Effect of Bacteria Isolated from the Plant Rhizosphere against Pathogenic Bacteria of Fish vol.24, pp.7, 2014, https://doi.org/10.5352/JLS.2014.24.7.757
  2. Plant acoustics: in the search of a sound mechanism for sound signaling in plants vol.67, pp.15, 2016, https://doi.org/10.1093/jxb/erw235
  3. Beyond Chemical Triggers: Evidence for Sound-Evoked Physiological Reactions in Plants vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00025