• 제목/요약/키워드: Plane strain

검색결과 997건 처리시간 0.029초

Q의 실험적 측정법 (An Experimental Method for Measuring Q)

  • 김동학;이정현;강기주
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1607-1613
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the in-plane strain. In addition, the effect of location where the displacement and strain are measured is explored.

탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론 (Nonsteady Plane-strain Ideal Forming with Elastic Dead Zone)

  • 이원오;정관수;;강태진
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.540-545
    • /
    • 2004
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, fur bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-stram flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, fur a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.

비틀림하중을 받는 기계구조물의 ESPI를 이용한 면내변위 측정에 관한 연구 (A Study on Measurement of In-Plane Displacement using ESPI in Mechanical Structure under torsional load)

  • 장석원;이학주;최은오;정찬희
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.693-700
    • /
    • 2002
  • Recently, the mechanical structures applied to many industrial products, especially in electronic products, appear to be miniaturized and complicated. This trend makes it difficult to analyze the stress distribution of those mechanical structures and generates new challenges for precise measurement of strain. In order to solve this measurement problem many optical measurement techniques have been suggested. Among those, the ESPI(Electronic Speckle Pattern Interferometry) has been considered as one of the most useful tools. But the shortage of recognition and difficulties of measurement have limited its industrial applications in spite of its excellent capabilities. Therefore in this study, not only the verification of the FEA result but the enhancement of industrial application of ESPI was tried by measuring the in-plane displacement of mechanical structure with ESPI, which is difficult to be measured with strain gauge.

Fatigue Strength Assessment of Spot-Welded Lap Joint Using Strain Energy Density Factor

  • Sohn, Ilseon;Bae, Dongho
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.44-51
    • /
    • 2001
  • One of the recent issues in design of the spot-welded structure such as the automobile body is to develop an economical prediction method of the fatigue design criterion without additional fatigue test. In this paper, as one of basic investigation for developing such methods, fracture mechanical approach was investigated. First, the Model I, Mode II and Mode III, stress intensity factors were analyzed. Second, strain energy density factor (S) synthetically including them was calculated. And finally, in order to decide the systematic fatigue design criterion by using this strain energy density factor, fatigue data of the ΔP-N(sub)f obtained on the various in-plane bending type spot-welded lap joints were systematically re-arranged in the ΔS-N(sub)f relation. And its utility and reliability were verified by the theory of Weibull probability distribution function. The reliability of the proposed fatigue life prediction value at 10(sup)7 cycles by the strain energy density factor was estimated by 85%. Therefore, it is possible to decide the fatigue design criterion of spot-welded lap joint instead of the ΔP-N(sub)f relation.

  • PDF

전자처리 및 Laser간섭에 의한 구조물의 Strain 측정에 관한 연구 (A Study on the Strain Measurement of Structure object by Electronic Process and Laser Interferometry)

  • Jung, W.K.;Kim, K.S.;Yang, S.P.;Jung, H.C.;Kim, J.H.
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.40-49
    • /
    • 1995
  • This paper presents the performance and problems in analysis method and testing system of Electronic Speckle Pattern Interferometry (ESPI) method, in measuring two - dimensional in-plane displacement. The anyalysis result of measurement by ESPE is quite comparable to that tof measurement by strain gauge method. This implies that the method of ESPE is a very effective tool in non-contact two-dimensional in-plane strain analysis. But there is a controversal point, measurment error. This error is discussed to be affected not by ESPE method itself, but by its analysis scheme of the interference fringe, where the first-order interpolation has been applied to the points of strain measured. In this case, it is turned out that the more errors would be occurred in the large interval of fringe. And so this paper describes a computer method for drawing when the height is available only for some arbitrary collection of points. The method is based on a distance-weighted, last- squares approximation technique with the weight varying with the distance of the data points.

  • PDF

평면변형률 전단시험과 근거리 사진계측기법을 통한 알루미늄 봉의 전단특성 (Shearing Characteristics of Aluminium Rods Using Plane Strain - Shear Box Test and Close Range Photogrammetric Technique)

  • 이용주;송기정
    • 한국지반공학회논문집
    • /
    • 제26권8호
    • /
    • pp.5-14
    • /
    • 2010
  • 지반모형실험에서 2차원 평면변형률 상태를 모사하기 위해서는 흙을 담을 수 있는 두꺼운 유리 또는 플라스틱 시트의 토조가 필요하며, 이 때 흙과 접촉되는 토조벽면에서의 마찰저항을 최소화 하여야 한다. 하지만, 실제로 이러한 벽면마찰을 완전히 제거할 수는 없다. 본 연구에서는 벽면 마찰저항을 제거하기 위해 다양한 지름을 갖는 알루미늄 봉 지반모델을 도입하고 실내전단시험에 적용하였다. 또한 근거리 사진계측기법을 전단시험에 적용해 유용성을 검증하였다. 그 결과, 근거리 사진계측으로부터 얻은 평균 팽창각은 전단시험의 전단변형률-체적변형률 곡선으로부터 얻는 팽창각에 근접함을 확인할 수 있었다.

각 종 모래의 Stress-dilatancy 관계에 관한 연구 (A Study of a Variety of Sands in Stress-dilatancy Relationships)

  • 박춘식;장정욱
    • 한국지반공학회논문집
    • /
    • 제18권1호
    • /
    • pp.41-48
    • /
    • 2002
  • 공중낙하법에 의해 만든 등방압밀 모래공시 체를 미소변형률 측정장치를 사용한 평면변형률압축시험을 실시하여 미소변형률에서 파괴후까지의 응력-다이레이턴시(stress-dilatancy) 관계를 연구하였다. 세계 각국의 주요 연구기관에서 사용되고 있는 7종류의 연구용 표준사 공시체를 멤브레인의 관입에 의한 오차와 변위를 외부에서 측정함으로 하여 생기는 오차(bedding error) 등의 영향을 제거하여 측정한 최대주응력방향의 변형률과 최소주응력방향의 변형률을 각각 0.0001%에서 파괴 시까지의 응력-변형률 관계를 얻었다. 그 결과 미소변형률 수준에서 파괴 시가지의 주응력비-주변헝률증분비 관계는 과압밀비 및 구속압에 거의 영향을 받지 않고 동일하였다. 또한 미소변형률에서는 이방성이 주응력비-주변형률증분비 관계에 미치는 영향은 거의 없지만, 파괴 부근에서의 K값의 크기는 $\delta$에 따라 다른 값을 나타내었다. 한편, K값은 모래의 종류에 따라 다른 값을 나타내었다. 전체적으로 Rowe의 응력-다이레이턴시식은 미소변형를에서 파괴까지 근사적으로 성립한다는 것을 알았다.

유한요소법을 이용한 초소성 성형공정 해석 (Analysis of Superplastic Forming Processes U sing Finite Element Method)

  • 홍성석;김민호;김용환
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1411-1421
    • /
    • 1995
  • A rigid visco-plastic finite element method has been developed for modeling superplastic forming processes. The optimum pressure-time relationship for a target strain rate and thickness distributions was predicted using two-node line element based on membrane approximation for plane strain and axisymmetric condition. Analysis of superplastic forming was carried out using the developed program and the numerical results were compared to the values available in the literature for plane strain problems. For description of the contact between the dies and sheet, the direct projection method was applied to the complicated problem and the validity of the scheme was tested. Experiments for the various geometries such as hemisphere and cone were performed with the developed forming machine using the calculated optimum pressure-time curves. Comparison between analysis and experiments showed good agreement.

비축대칭 형상의 밀폐형 링 단조에 관한 연구 (A Study on the Non-Axisymmetric Closed-Die Ring Forging)

  • 배원병;김영호;이종헌;이원희
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.202-214
    • /
    • 1994
  • An upper bound elemental technique(UBET) is applied to predict the forging load and die-cavity filling for non-axisymmetric ring forging. In order to analyze the process easily, it is suggested that the finial product is divided into three different deformation regions. That is axisymmetric part in corner, lateral plane-strain part and shear deformation on boundaries between them. the place-strain and axisymmetric part are combinded by building block method. Also the total energy is computered through combination of three deformation part. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

Q의 실험적 측정법 (The Experimental Method of Measuring Q)

  • 김동학;이정현;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.285-291
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the inplane strain. Also, the effect of location where the displacement and strain are measured is explored.

  • PDF